Table of Contents

Breaking Insights
- **641** Highlights from Recent Cancer Literature

Review
- **643** The Diagnostic, Prognostic, and Therapeutic Potential of Adaptive Immune Receptor Repertoire Profiling in Cancer

 Lindsay G. Cowell

Cancer Research Highlights
- **655** Build-a-Mouse: Melanoma Modeling Picks up Speed

 Andres Thorkelsson, Glenn Merlino, and Helen Michael

 See related article, p. 912

- **657** Epigenetic Marks Repressing Gluconeogenesis in Liver and Kidney Cancer

 Katharina Leithner

 See related article, p. 675

Controversy and Consensus
- **659** Beyond Angiogenesis: Exploiting Angiocrine Factors to Restrict Tumor Progression and Metastasis

 Mahak Singhal and Hellmut G. Augustin

Metabolism and Chemical Biology
- **663** Unshielding Multidrug Resistant Cancer through Selective Iron Depletion of P-Glycoprotein–Expressing Cells

 Mihály Cserépes, Dóra Türk, Szilárd Tóth, Veronika F.S. Pape, Anikó Gaál, Melinda Gera, Judit E. Szabó, Nóra Kucsma, György Várady, Beáta G. Vértessy, Christina Streli, Pál T. Szabó, Jozséf Tovari, Norbert Szoboszlai, and Gergely Szakács

 Modulation of the MDR phenotype has the potential to increase the efficacy of anticancer therapies. These findings show that the MDR transporter is a "double-edged sword" that can be turned against resistant cancer.

- **675** A Feedback Circuitry between Polycomb Signaling and Fructose-1, 6-Bisphosphatase Enables Hepatic and Renal Tumorigenesis

 Kun Liao, Shuye Deng, Liyan Xu, Wenfeng Pan, Shiyu Yang, Fufu Zheng, Xingui Wu, Hongrong Hu, Zhijun Liu, Junhang Luo, Rui Zhang, Dong-Ming Kuang, Jiajun Dong, Yi Wu, Hui Zhang, Penghui Zhou, Jin-Xin Bei, Yang Xu, Yin Ji, Peng Wang, Huai-Qiang Ju, Rui-Hua Xu, and Bo Li

 A novel feedback loop involving EZH2 and suppression of the gluconeogenesis enzyme FBP1 promotes hepatocellular cancer growth.

 See related commentary, p. 657

- **689** Mass Spectrometry Imaging Enables Discrimination of Renal Oncocytoma from Renal Cell Cancer Subtypes and Normal Kidney Tissues

 Jialing Zhang, Shirley Q. Li, John Q. Lin, Wendong Yu, and Livia S. Eberlin

 Metabolic data acquired by mass spectrometry imaging in conjunction with statistical modeling allows discrimination of renal tumors and has the potential to be used in the clinic to improve treatment of patients.

Molecular Cell Biology
- **699** Extracellular ATP and Purinergic P2Y₂ Receptor Signaling Promote Liver Tumorigenesis in Mice by Exacerbating DNA Damage

 Isabel Schulien, Birgit Hockenjos, Veerle van Marck, C. Korcan Ayata, Marie Follo, Robert Thimme, and Peter Hasselblatt

 Extracellular ATP and subsequent P2Y₂ receptor function stimulate DNA damage responses and hepatocyte proliferation, thereby promoting hepatocarcinogenesis in mice. Targeting this pathway may be an attractive approach for chemoprevention of hepatocellular carcinoma.

- **709** Cooperative Blockade of PKCa and JAK2 Drives Apoptosis in Glioblastoma

 These findings identify PKCa and JAK2 as targets that drive apoptosis in glioblastoma, potentially representing a clinically translatable approach for glioblastoma.

Downloaded from cancerres.aacrjournals.org on July 6, 2021. © 2020 American Association for Cancer Research.
TABLE OF CONTENTS

TUMOR BIOLOGY AND IMMUNOLOGY

719
The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults

Yongfeng Yang, Chuanzhen Yang, Tingting Li, Shuyu Yu, Tingting Gan, Jiachi Hu, Jun Cui, and Xiaofeng Zheng

This study demonstrates that USP38 regulates genome stability and mediates cancer cell resistance to DNA-damaging therapy, providing insight into tumorigenesis and implicating USP38 as a potential target for cancer diagnosis.

732
HPV16 E5 Mediates Resistance to PD-L1 Blockade and Can Be Targeted with Rimantadine in Head and Neck Cancer

This study identifies a novel mechanism of resistance to anti-PD-1/PD-L1 immunotherapy mediated by HPV E5, which can be exploited using the HPV E5 inhibitor rimantadine to improve outcomes for head and neck cancer patients.

747
Netrin-1 and Its Receptor DCC Are Causally Implicated in Melanoma Progression

Amina Boussouar, Antonin Tortereau, Ambroise Manceau, Andrea Paradisi, Nicolas Gadot, Jonathan Vial, David Neves, Lionel Larue, Maxime Battistella, Christophe Leboeuf, Celeste Lebbé, Anne Janin, and Patrick Mehlen

Netrin-1 and its receptor DCC regulate melanoma progression, suggesting therapeutic targeting of this signaling axis as a viable option for melanoma treatment.

757
A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition

Philip Kitchen, Ka Ying Lee, Danielle Clark, Nikki Lau, Jomarong Lertsuwan, Anyporn Sawas dichai, Jutamaad Satayavivad, Sebastian Oltean, Simon Afford, Kevin Gaston, and Padma- Sheela Jayaraman

The PRH/HHEX transcription factor is an oncopgenic driver in cholangiocarcinoma that confers sensitivity to CDK4/6 inhibitors.

771
Integrin β4–Targeted Cancer Immunotherapies Inhibit Tumor Growth and Decrease Metastasis

Shasha Ruan, Ming Lin, Yong Zhu, Lawrence Lum, Archana Thakur, Runming Jin, Wenlong Shao, Yali Zhang, Yangyang Hu, Shiang Huang, Elaine M. Hurt, Alfred E. Chang, Max S. Wicha, and Qiao Li

Immune targeting of ITGB4 may represent a novel approach to improve the efficacy of current cancer immunotherapies.

784
IL6/STAT3 Signaling Orchestrates Premetastatic Niche Formation and Immunosuppressive Traits in Lung

Bo Jing, Tong Wang, Belbei Sun, Jianhua Xu, Dongliang Xu, Yueling Liao, Hongyong Song, Wenzheng Guo, Kaimi Li, Min Hu, Siwei Zhang, Jing Ling, Yanbin Kuang, Tuo Zhang, Binhua P. Zhou, Feng Yao, and Jiong Deng

IL6 plays important roles not only in cell autonomous propensity for metastasis, but also in establishing the metastatic niche.

798
Inhibition of Haspin Kinase Promotes Cell-Intrinsic and Extrinsic Antitumor Activity

Johannes C. Melms, Sreeram Vallabhaneni, Caitlin E. Mills, Clarence Yapp, Jia-Yun Chen, Eugenio Morelli, Patricia Waszyk, Sushil Kumar, Derrick Deming, Nienke Moret, Steven Rodriguez, Kartik Subramanian, Meri Rogava, Adam N.R. Cartwright, Adrienne Luoma, Shaolin Mei, Titus J. Brinker, David M. Miller, Alexander Spектор, Dirk Schadendorf, Nicolo Riggi, Kai W. Wucherpfennig, Peter K. Sorger, and Benjamin Izar

Haspin inhibition by CX-6258 is a novel and potent strategy for RAF/MEK inhibitor-resistant melanoma and potentially other tumor types. HASPIN inhibition has direct antitumor activity and induces a favorable immune microenvironment.

811
Sustained Coevolution in a Stochastic Model of Cancer–Immune Interaction

Jason T. George and Herbert Levine

The early cancer–immune interaction sculpts intratumor heterogeneity through the selection of immune-escape clones. This study provides a mathematical framework for investigating the coevolution between an immune-escape cancer population and the adaptive immune system.

TRANSLATIONAL SCIENCE

820
A Tumor-in-Host DEB-Based Approach for Modeling Cachexia and Bevacizumab Resistance

Elena M. Tosca, Maurizio Rocchetti, Enrico Pesenti, and Paolo Magni

A mathematical model describes tumor growth in animal models, taking into consideration the energy balance involving both the growth of tumor and the physiologic functions of the host.

832
Aurora A Kinase Inhibition Destabilizes PAX3-FOXO1 and MYCN and Synergizes with Navitoclax to Induce Rhabdomyosarcoma Cell Death

Johannes Ommer, Joanna L. Selfe, Marco Wachtel, Eleanor M. O’Brien, Dominik Laubscher, Michaela Roemmelte, Stephanie Kasper, Olivier Delattre, Didier Surdez, Gemma Petts, Anna Kelsey, Janet Shipley, and Beat W. Schäfer

These findings show that Aurora kinase A and Bcl-2 family proteins are potential targets for FP-RMS.
Combined MEK and PI3K/p110β Inhibition as a Novel Targeted Therapy for Malignant Mesothelioma Displaying Sarcomatoid Features
Miriam Marqués, Robin Tranchant, Blanca Risa-Ebrí, María L. Suárez-Solís, Luis C. Fernández, Enrique Carrillo-de-Santa-Pau, Natalia del Pozo, Jaime Martínez de Villarreal, Clément Meiller, Yves Allory, Yuna Blum, Christine Pirker, Balazs Hegedus, Simon T. Barry, Walter Berger, Didier Jean, and Francisco X. Real

Mesothelioma is highly aggressive; its sarcomatoid variants have worse prognosis. Building on a genetic mouse model, a novel combination therapy is uncovered that is relevant to human tumors.

Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer
Cassandra L. Moyer, Jennifer Ivanovich, Jessica L. Gillespie, Rachel Doberstein, Marc R. Radke, Marcy E. Richardson, Scott H. Kaufmann, Elizabeth M. Swisher, and Paul J. Goodfellow

Functional characterization of rare variants of uncertain significance in BRIP1 revealed that 75% demonstrate loss-of-function activity, suggesting rare missense alleles in BRIP1 confer risk for both breast and ovarian cancer.

Mathematical Modeling of Preclinical Alpha-Emitter Radiopharmaceutical Therapy
Alireza Karimian, Nathan T. Ji, Hong Song, and George Sgouros

Modeling is used to optimize RPT.

Murine Oviductal High-Grade Serous Carcinomas Mirror the Genomic Alterations, Gene Expression Profiles, and Immune Microenvironment of Their Human Counterparts
Kevin W. McCool, Zachary T. Freeman, Yali Zhai, Rong Wu, Kevin Hu, Chia-Jen Liu, Scott A. Tomlins, Eric R. Fearon, Brian Magnuson, Rork Kuick, and Kathleen R. Cho

The acquired gene mutations, broad genomic alterations, and gene expression and immune cell-tumor axis changes in a mouse model of oviductal serous carcinoma closely mirror those of human tubo-ovarian high-grade serous carcinoma.

NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer
Timothy Nacarelli, Takeshi Fukumoto, Joseph A. Zundell, Nail Fatkhutdinov, Stephanie Jean, Mark G. Cadungog, Mark E. Borowsky, and Rugang Zhang

This study highlights the importance of NAMPT-mediated NAD+ biosynthesis in the production of cisplatin-induced senescence-associated cancer stem cells, as well as tumor relapse after cisplatin treatment.

Cell Adhesiveness Serves as a Biophysical Marker for Metastatic Potential
Pranjali Beri, Anna Popravko, Benjamin Yeoman, Aditya Kumar, Kevin Chen, Enio Hodzic, Alyssa Chiang, Afsheen Banisadr, Jesse K. Placone, Hannah Carter, Stephanie I. Fraley, Parag Katira, and Adam J. Engler

Cancer cells exhibit heterogeneity in adhesiveness, which can be used to predict metastatic potential.

A Versatile ES Cell–Based Melanoma Mouse Modeling Platform
Ilah Bok, Olga Vera, Xiaonan Xu, Neel Jasani, Koji Nakamura, Jordan Reff, Arianna Nenci, Jose G. Gonzalez, and Florian A. Karreth

This study presents a high-throughput and versatile ES cell-based mouse modeling platform that can be combined with state-of-the-art genetic tools to address unanswered questions in melanoma in vivo.

A C icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Shining a light on cholangiocarcinoma. NanoString imaging highlights spatial interactions between tumor cells (green), T cells (red), and stromal cells (yellow) within the cholangiocarcinoma tumor microenvironment. The recruitment of immune cells, activation of stromal cells, and proliferation of epithelial cells is a feature of cholangiocarcinoma. Dysregulation of WNT and NOTCH signaling pathways is critical to proliferation and invasion and occurs through activation of the PRH transcription factor, which is thereby able to increase epithelial-mesenchymal plasticity and transit through the cell cycle. Image collected by Dr. Jingjing Gong (NanoString), Dr. Isioma Egbuniwe (histopathologist, University of Nottingham, United Kingdom), Professor K. Gaston (University of Nottingham), and Dr. P.S. Jayaraman (University of Birmingham, United Kingdom). For details, see article by Kitchen and colleagues on page 737.
80 (4)

| Updated version | Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/80/4 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/80/4. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.