3749 Highlights from Recent Cancer Literature

3751 Aspirin in Hepatocellular Carcinoma
Emanuela Ricciotti, Kirk J. Wangensteen, and Garret A. FitzGerald

3762 Hypothermia Is a Potential New Therapy for a Subset of Tumors with Mutant p53
Wenwei Hu and Zhaohui Feng
See related article, p. 3905

3764 How Cancer Risk SNPs May Contribute to Prostate Cancer Disparities
Mnaya Y. Mavura and Franklin W. Huang
See related article, p. 3766

3766 Susceptibility-Associated Genetic Variation in NEDD9 Contributes to Prostate Cancer Initiation and Progression
Dong Han, Jude N. Owiredu, Bridget M. Healy, Muqing Li, Maryam Labaf, Jocelyn S. Steinfeld, Susan Patalano, Shuai Gao, Mingyu Liu, Jill A. Macoska, Kourosh Zarringhalam, Kellee R. Siegfried, Xin Yuan, Timothy R. Rebbeck, and Changmeng Cai
A prostate cancer susceptibility genetic variation in NEDD9, which is strongly associated with the increased risk of patients with African ancestry, increases NEDD9 expression and promotes initiation and progression of prostate cancer.
See related commentary, p. 3764

3777 Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma
These findings reveal the mutational landscape and key drivers in murine radiation-induced thymic lymphoma, a classic animal model that has been used to study radiation carcinogenesis for over 70 years.

3791 LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer
Samuel A. Miller, Robert A. Policastro, Shruthi Sridrakumar, Tim Lai, Thomas D. Huntington, Christopher A. Ladaika, Daeho Kim, Chunhai Hao, Gabriel E. Zentner, and Heather M. O'Hagan
This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.

3806 Dual Covalent Inhibition of PKM and IMPDH Targets Metabolism in Cutaneous Metastatic Melanoma
Marwa Zerhouni, Anthony R. Martin, Nathan Furstoss, Vincent S. Gutierrez, Emilie Jaune, Nedra Tekaya, Guillaume E. Beranger, Patricia Abbe, Claire Regazzetti, Hella Amdouni, Mohsin Deniowya, Patrice Dubreuil, Frédéric Luciano, Arnaud Jacquel, Meri K. Tului, Thomas Cluzeau, Brendan P. O’Hara, Issam Ben-Sahra, Thierry Passeron, Rachid Bhihida, Guillaume Robert, Patrick Auburger, and Stéphane Rocchi
Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3822</td>
<td>USP48 Is Upregulated by Mettl14 to Attenuate Hepatocellular Carcinoma via Regulating SIRT6 Stabilization</td>
<td>Lutao Du, Yang Li, Min Kang, Maoxiao Feng, Yidan Ren, Hongliang Dai, Yumin Wang, Yunshan Wang, and Bo Tang</td>
</tr>
<tr>
<td>3835</td>
<td>Epigenetic Induction of Mitochondrial Fission Is Required for Maintenance of Liver Cancer-Initiating Cells</td>
<td>Miaoling Tang, Meisongzhu Yang, Geyan Wu, Shuang Mo, Xingui Wu, Shuxia Zhang, Ruyuan Yu, Yameng Hu, Yingru Xu, Ziwen Li, Xinyi Liao, Jun Li, and Libing Song</td>
</tr>
<tr>
<td>3849</td>
<td>The Transcription Factor SLUG Uncouples Pancreatic Cancer Progression from the RAF-MEK1/2-ERK1/2 Pathway</td>
<td>Faiz Bilal, Enrique J. Arenas, Kim Pedersen, Alex Martinez-Sabadell, Behnam Nabet, Elizabeth Guruceaga, Silvestre Vicent, Josep Tabernero, Teresa Macarulla, and Joaquin Arribas</td>
</tr>
<tr>
<td>3862</td>
<td>Host-Dependent Phenotypic Resistance to EGFR Tyrosine Kinase Inhibitors</td>
<td>Yuya Haga, Ilaria Marrocco, Ashish Noronha, Mary Luz Uribe, Nishanth Belugal Nataraj, Arunachalam Sekar, Diana Sara-Garcia, Simone Borgoni, Moshih Lindzen, Suvendu Giri, Stefan Wiemann, Yasuo Tsutsuki, and Yosef Yarden</td>
</tr>
<tr>
<td>3890</td>
<td>Diet Alters Entero-Mammary Signaling to Regulate the Breast Microbiome and Tumorigenesis</td>
<td>David R. Soto-Pantoja, Mohamed Gaber, Alana A. Arnone, Steven M. Bronson, Nildris Cruz-Diaz, Adam S. Wilson, Kenysya Y.J. Clear, Manuel U. Ramirez, Gregory L. Kucera, Edward A. Levine, Sophie A. Lelièvre, Lesley Chaboub, Akiko Chiba, Hariom Yadav, Pierre-Alexandre Vidi, and Katherine L. Cook</td>
</tr>
</tbody>
</table>

MOLECULAR CELL BIOLOGY

TUMOR BIOLOGY AND IMMUNOLOGY

TRANSLATIONAL SCIENCE
Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer

This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.

Quantitative Analysis of Tyrosine Phosphorylation from FFPE Tissues Reveals Patient-Specific Signaling Networks

This study reports a highly sensitive method utilizing FFPE tissues to identify dysregulated signaling networks in patient tumors, opening the door for direct translational insights from FFPE tumor tissue banks in hospitals.

ABOUT THE COVER

Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, and this often entails emergence of new mutations. Establishment of lung cancer cells resistant to a second-line EGFR inhibitor called dacomitinib uncovered a previously unknown intermediate step of the process leading to resistance acquisition. The interim step involves acquired features characteristic to epithelial-mesenchymal transition, is nonmutational, and can still be reversed by host factors. The cover image shows spheroids of PC9 cells probed for E-cadherin (green), vimentin (red), and DAPI (blue). For details, see article by Haga and colleagues on page 3862.