TABLE OF CONTENTS

BREAKING INSIGHTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3749</td>
<td>Highlights from Recent Cancer Literature</td>
<td></td>
</tr>
</tbody>
</table>

REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3751</td>
<td>Aspirin in Hepatocellular Carcinoma</td>
<td>Emanuela Ricciotti, Kirk J. Wangensteen, and Garret A. FitzGerald</td>
</tr>
</tbody>
</table>

CANCER RESEARCH HIGHLIGHTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3762</td>
<td>Hypothermia Is a Potential New Therapy for a Subset of Tumors with Mutant p53</td>
<td>Wenwei Hu and Zhaohui Feng</td>
</tr>
<tr>
<td></td>
<td>See related article, p. 3905</td>
<td></td>
</tr>
<tr>
<td>3764</td>
<td>How Cancer Risk SNPs May Contribute to Prostate Cancer Disparities</td>
<td>Mnaya Y. Mavura and Franklin W. Huang</td>
</tr>
<tr>
<td></td>
<td>See related article, p. 3766</td>
<td></td>
</tr>
</tbody>
</table>

GENOME AND EPIGENOME

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3766</td>
<td>Susceptibility-Associated Genetic Variation in NEDD9 Contributes to Prostate Cancer Initiation and Progression</td>
<td>Dong Han, Jude N. Owiredu, Bridget M. Healy, Muqin Li, Maryam Labaf, Jocelyn S. Steinfeld, Susan Patalano, Shuai Gao, Mingyu Liu, Jill A. Macoska, Kourosh Zarringhalam, Kellee R. Siegfried, Xin Yuan, Timothy R. Rebbeck, and Changmeng Cai</td>
</tr>
<tr>
<td></td>
<td>A prostate cancer susceptibility genetic variation in NEDD9, which is strongly associated with the increased risk of patients with African ancestry, increases NEDD9 expression and promotes initiation and progression of prostate cancer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See related commentary, p. 3764</td>
<td></td>
</tr>
</tbody>
</table>

METABOLISM AND CHEMICAL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3777</td>
<td>Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma</td>
<td>Chang-Lung Lee, Kennedy D. Brock, Stephanie Hasapis, Dadong Zhang, Alexander B. Sibley, Xiaodi Qin, Jeremy S. Gresham, Isbel Carabalbo, Lixia Luo, Andrea R. Daniel, Matthew J. Hilton, Kouros Owzar, and David G. Kirsch</td>
</tr>
<tr>
<td></td>
<td>These findings reveal the mutational landscape and key drivers in murine radiation-induced thymic lymphoma, a classic animal model that has been used to study radiation carcinogenesis for over 70 years.</td>
<td></td>
</tr>
<tr>
<td>3791</td>
<td>LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer</td>
<td>Samuel A. Miller, Robert A. Policastro, Shruthi Srirankumar, Tim Lai, Thomas D. Huntington, Christopher A. Ladaika, Daeho Kim, Chunhai Hao, Gabriel E. Zentner, and Heather M. O’Hagan</td>
</tr>
<tr>
<td></td>
<td>This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.</td>
<td></td>
</tr>
<tr>
<td>3806</td>
<td>Dual Covalent Inhibition of PKM and IMPDH Targets Metabolism in Cutaneous Metastatic Melanoma</td>
<td>Marwa Zerhouni, Anthony R. Martin, Nathan Furstoss, Vincent S. Gutierrez, Emilie Jaune, Nedra Tekaya, Guillaume E. Beranger, Patricia Abbe, Claire Regazzetti, Hella Amdouni, Mohsine Driouwy, Patrice Dubreuil, Frédéric Luciano, Arnaud Jacquel, Meri K. Tuling, Thomas Cluzeau, Brendan P. O’Hara, Issam Ben-Sahra, Thierry Passeron, Rachid Benhida, Guillaume Robert, Patrick Auburger, and Stéphane Rocchi</td>
</tr>
<tr>
<td></td>
<td>Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.</td>
<td></td>
</tr>
</tbody>
</table>
MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY
3835 Epigenetic Induction of Mitochondrial Fission is Required for Maintenance of Liver Cancer-Initiating Cells
Miaoling Tang, Meisongzhu Yang, Geyan Wu, Shuang Mo, Xingui Wu, Shuxia Zhang, Ruyuan Yu, Yameng Hu, Yingru Xu, Ziwon Li, Xinyi Liao, Jun Li, and Libing Song
These findings show that TBX19/PRMT1 complex–mediated upregulation of MFF promotes mitochondrial fission and tumor-initiating capacity in liver cancer cells, identifying PRMT1 as a viable therapeutic target in liver cancer.

3849 The Transcription Factor SLUG Uncouples Pancreatic Cancer Progression from the RAF-MEK1/2-ERK1/2 Pathway
Faiz Bilal, Enrique J. Arenas, Kim Pedersen, Alex Martínez-Sabadell, Behnam Nabet, Elizabeth Guruceaga, Silvestre Vicent, Josep Tabernero, Teresa Macarulla, and Joaquín Arribas
This study demonstrates that SLUG confers resistance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tumor progression from KRAS–RAF–MEK1/2–ERK1/2 signaling, providing new therapeutic opportunities.

TUMOR BIOLOGY AND IMMUNOLOGY

HOST-DEPENDENT PHENOTYPIC RESISTANCE TO EGFR TYROSINE KINASE INHIBITORS
Yuya Haga, Ilaria Marrocco, Ashish Noronha, Mary Luz Uribe, Nishanth Belagali Nataraj, Arunachalam Sekar, Diana Dragó-García, Simone Borgoni, Moshit Lindzen, Suvedu Giri, Stefan Wiemann, Yirui Gui, and Josep Tabernero
This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state.

HYPOThERMIA EFFECTIVELY TREATS TUMORS WITH TEMPERATURE-SENSITIVE p53 MUTATIONS
Junhao Lu, LiHong Chen, Zheng Song, Mousumi Das, and Jiandong Chen

See related commentary, p. 3762

See related commentary, p. 3762

TUMOR BIOLOGY AND IMMUNOLOGY

HOST-DEPENDENT PHENOTYPIC RESISTANCE TO EGFR TYROSINE KINASE INHIBITORS
Yuya Haga, Ilaria Marrocco, Ashish Noronha, Mary Luz Uribe, Nishanth Belagali Nataraj, Arunachalam Sekar, Diana Dragó-García, Simone Borgoni, Moshit Lindzen, Suvedu Giri, Stefan Wiemann, Yirui Gui, and Josep Tabernero
This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state.

HYPOThERMIA EFFECTIVELY TREATS TUMORS WITH TEMPERATURE-SENSITIVE p53 MUTATIONS
Junhao Lu, LiHong Chen, Zheng Song, Mousumi Das, and Jiandong Chen

See related commentary, p. 3762

TRANSLATIONAL SCIENCE

Hypothermia Effectively Treats Tumors with Temperature-Sensitive p53 Mutations
Junhao Lu, LiHong Chen, Zheng Song, Mousumi Das, and Jiandong Chen

See related commentary, p. 3762
Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer

This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.

Quantitative Analysis of Tyrosine Phosphorylation from FFPE Tissues Reveals Patient-Specific Signaling Networks

This study reports a highly sensitive method utilizing FFPE tissues to identify dysregulated signaling networks in patient tumors, opening the door for direct translational insights from FFPE tumor tissue banks in hospitals.

About the Cover
Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, and this often entails emergence of new mutations. Establishment of lung cancer cells resistant to a second-line EGFR inhibitor called dacomitinib uncovered a previously unknown intermediate step of the process leading to resistance acquisition. The interim step involves acquired features characteristic to epithelial-mesenchymal transition, is nonmutational, and can still be reversed by host factors. The cover image shows spheroids of PC9 cells probed for E-cadherin (green), vimentin (red), and DAPI (blue). For details, see article by Haga and colleagues on page 3862.
Cancer Research

81 (14)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/81/14

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/81/14.
Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.