TABLE OF CONTENTS

BREAKING INSIGHTS

5585
Highlights from Recent Cancer Literature

OBITUARY

5587
Joseph R. Bertino: In Memoriam (1930–2021)
William N. Hait

REVIEWS

5589
Epigenetic Alterations and Mechanisms That Drive Resistance to Targeted Cancer Therapies
Narendra Wajapeyee and Romi Gupta

5596
The Role of mRNA Translational Control in Tumor Immune Escape and Immunotherapy Resistance
Michael Cerezo, Caroline Robert, Lunxu Liu, and Shensi Shen

CANCER RESEARCH LANDMARKS

5605
PARP Inhibitors – Trapped in a Toxic Love Affair
Dragomir B. Krastev, Andrew J. Wicks, and Christopher J. Lord

See related article by Murai and colleagues, Cancer Res 2012;72:5588–99

CANCER RESEARCH HIGHLIGHTS

5608
mTOR-Dependent ARID1A Degradation: A New Twist in the Genetic-Epigenetic Interplay Driving Hepatocellular Carcinoma
David R. Pease and Martin E. Fernandez-Zapico

See related article, p. 5652

5611
Collagen Linearization within Tumors
Craig E. Barcus and Gregory D. Longmore

See related article, p. 5666

GENOME AND EPIGENOME

5613
Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid-Based Oncomir Inhibitors for Cancer Therapy
Karishma Dhuri, Ravinder Reddy Gaddam, Ajit Vikram, Frank J. Slack, and Raman Bahl

This study demonstrates the utility of novel oncomir inhibitors as cancer therapeutics, providing a new approach for targeting miRNAs and other noncoding RNAs.

5625
Diverse Oncogenic Fusions and Distinct Gene Expression Patterns Define the Genomic Landscape of Pediatric Papillary Thyroid Carcinoma
Ana Stosic, Fabio Fuligni, Nathaniel D. Anderson, Scott Davidson, Richard de Borja, Meryl Acker, Vito Forte, Paolo Campisi, Evan J. Propst, Nikolaus E. Wolter, Rose Chami, Ozgur Mete, David Malkin, Adam Shlien, and Jonathan D. Wasserman

This study highlights important distinctions between the genomes and transcriptomes of pediatric and adult papillary thyroid carcinoma, with implications for understanding the biology, diagnosis, and treatment of advanced disease in children.

MOLECULAR CELL BIOLOGY

5638
CstF64-Induced Shortening of the BID 3'UTR Promotes Esophageal Squamous Cell Carcinoma Progression by Disrupting ceRNA Cross-talk with ZFP36L2
Ai Lin, Ping Ji, Xiangjie Niu, Xuan Zhao, Yamei Chen, Weiling Liu, Yachen Liu, Wenyi Fan, Yanxia Sun, Chuanwang Miao, Shaosen Zhang, Wen Tian, Dongxin Lin, Eric J. Wagner, and Chen Wu

High-throughput analysis of alternative polyadenylation in esophageal squamous cell carcinoma identifies recurrent shortening of the BID 3'UTR as a driver of disease progression.

5652
mTORC1 Promotes ARID1A Degradation and Oncogenic Chromatin Remodeling in Hepatocellular Carcinoma
Shanshan Zhang, Yu-Feng Zhou, Jian Cao, Stephen K. Burley, Hui-Yun Wang, and X.F. Steven Zheng

mTOR promotes oncogenic chromatin remodeling by controlling ARID1A degradation, which is important for liver tumorigenesis and response to mTOR- and YAP-targeted therapies in hepatocellular carcinoma.

See related commentary, p. 5608
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5666</td>
<td>Matricellular Protein WISP2 Is an Endogenous Inhibitor of Collagen Linearization and Cancer Metastasis</td>
<td>Jagadeesh Tanjamam, Glendin Pano, Ruishan Wang, Benjamin A. Minden-Birkenmaier, Hannah Breeze-Jones, Eleanor Baker, Cecile Garcin, Georgia Clayton, Abbas Shirinifard, Ana Maria Zaske, David Finkelstein, and Myriam Labelle</td>
</tr>
<tr>
<td>5678</td>
<td>LncRNA HIF1A-AS1 Promotes Gemcitabine Resistance of Pancreatic Cancer by Enhancing Glycolysis through Modulating the AKT/YB1/HIF1α Pathway</td>
<td>Fengyu Xu, Mengqi Huang, Qingyong Chen, Yi Niu, Yuhang Hu, Ping Hu, Ding Chen, Chi He, Kang Huang, Zhu Zeng, Jianguo Tang, Fan Wang, Yong Zhao, Chunyou Wang, and Gang Zhao</td>
</tr>
<tr>
<td>5692</td>
<td>FSTL1 Secreted by Activated Fibroblasts Promotes Hepatocellular Carcinoma Metastasis and Stemness</td>
<td>Jia-Jian Loh, Tsz-Wai Li, Lei Zhou, Xin-Lok Wong, Xue Liu, Victor W.S. Ma, Chung-Mau Lo, Kwan Man, Terence K. Lee, Wen Ning, Man Tong, and Stephanie Ma</td>
</tr>
<tr>
<td>5706</td>
<td>TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer</td>
<td>Laura S.M. Lecker, Chiara Berlato, Eleni Maniati, Robin Delaine-Smith, Oliver M.T. Pearce, Owen Heath, Samuel J. Nichols, Caterina Trevisan, Marian Novak, Jacqueline McDermott, James D. Brenton, Pedro R. Cutilias, Vinothini Rajeeve, Ana Hennino, Ronny Drapkin, Daniela Loessner, and Frances R. Balkwill</td>
</tr>
<tr>
<td>5720</td>
<td>Oxidized Low-Density Lipoprotein Links Hypercholesterolemia and Bladder Cancer Aggressiveness by Promoting Cancer Stemness</td>
<td>Lin Yang, Jingya Sun, Meiqian Li, Yiming Long, Dianzheng Zhang, Hongqian Guo, Ruimin Huang, and Jun Yan</td>
</tr>
</tbody>
</table>

TRANSLATIONAL SCIENCE

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

CONVERGENCE AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5745</td>
<td>Raman Spectroscopy and Machine Learning Reveals Early Tumor Microenvironmental Changes Induced by Immunotherapy</td>
<td>Santosh Kumar Paidi, Joel Rodriguez Troncoso, Piyush Raj, Paola Monterroso Diaz, Jesse D. Ivers, David E. Lee, Nathan L. Avaritt, Allen J. Gies, Charles M. Quick, Stephanie D. Byrum, Alan J. Tackett, Narasimhan Rajaram, and Ishan Barman</td>
</tr>
</tbody>
</table>

TUMOR BIOLOGY AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5706</td>
<td>TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer</td>
<td>Laura S.M. Lecker, Chiara Berlato, Eleni Maniati, Robin Delaine-Smith, Oliver M.T. Pearce, Owen Heath, Samuel J. Nichols, Caterina Trevisan, Marian Novak, Jacqueline McDermott, James D. Brenton, Pedro R. Cutilias, Vinothini Rajeeve, Ana Hennino, Ronny Drapkin, Daniela Loessner, and Frances R. Balkwill</td>
</tr>
</tbody>
</table>

This study shows that FSTL1 secreted by activated fibroblasts in the liver microenvironment augments hepatocellular carcinoma malignancy, providing a potential new strategy to improve treatment of this aggressive disease.

Characterization of Peptides Targeting Metastatic Tumor Cells as Probes for Cancer Detection and Vehicles for Therapy Delivery

Shraddha Subramanian, Alexes C. Daquinag, Solmaz AghaAmiri, Sukhen C. Ghosh, Ali Azhdarinia, and Mikhail G. Kolonin

This study identifies new molecules that bind metastatic cells and demonstrates their application as noninvasive imaging probes and vehicles for cytotoxic therapy delivery in preclinical cancer models.
Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets

Shirin Elizabeth Khorsandi, Arran D. Dokal, Vinothini Rajeeve, David J. Britton, Megan S. Illingworth, Nigel Heaton, and Pedro R. Cutillas

Phosphoproteomic and computational analyses identify patient-specific drug targets in cholangiocarcinoma, supporting the potential of a machine learning method to predict personalized therapies.

Correction: CXCL12 Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes

ABOUT THE COVER

Various types of cancer overexpress oncogenic miRNAs, making them a potential therapeutic target. Next-generation chemically modified triplex peptide nucleic acid–based miR-155 inhibitors possess superior therapeutic efficacy compared with conventional full-length anti-miR-155. The cover depicts intratumoral treatment with the next-generation anti-miRNA-155 inhibitor. For details, see article by Dhuri and colleagues on page 5613.

doi: 10.1158/0008-5472.CAN-81-22-CVR