BREAKING INSIGHTS

777 Highlights from Recent Cancer Literature

REVIEWS

779 Holding on to Junk Bonds: Intron Retention in Cancer and Therapy
Geoffray Monteuuis, Ulf Schmitz, Veronika Petrova, Padraic S. Kearney, and John E.J. Rasko

790 The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within
Sheetal Parida and Dipali Sharma

801 Eph Receptors in the Immunosuppressive Tumor Microenvironment
Peter W. Janes, Mary E. Vail, Matthias Ernst, and Andrew M. Scott

806 Unraveling the Mysteries of PAX8 in Reproductive Tract Cancers
Daniele Chaves-Moreira, Patrice J. Morin, and Ronny Drapkin

CANCER RESEARCH HIGHLIGHTS

811 Adaptive Therapy and the Cost of Drug-Resistant Mutants
Dominik Wodarz
See related article, p. 1135

813 How Epigenetic Therapy Beats Adverse Genetics in Monosomy Karyotype AML
Heather M. O’Hagan, Feyruz V. Rassool, and Kenneth P. Nephew
See related article, p. 834

CONTROVERSY AND CONSENSUS

816 Assessing Drug Development Risk Using Big Data and Machine Learning
Vangelis Vergetis, Dimitrios Skalsas, Vassilis G. Gorgoulis, and Aristotleis Tsirigos

820 BRD9 is a Critical Regulator of Androgen Receptor Signaling and Prostate Cancer Progression
Aktan Alpsoy, Sagar M. Uutturkar, Benjamin C. Carter, Alisha Dhiman, Sandra E. Torregrosa-Allen, Melanie P. Currie, Bennett D. Elzey, and Emily C. Dykhuijen
Advanced prostate cancers resistant to androgen receptor antagonists are still susceptible to nontoxic BRD9 inhibitors, making them a promising alternative for halting AR signaling in progressed disease.

834 Decitabine Induces Gene Derepression on Monosomic Chromosomes: In Vitro and In Vivo Effects in Adverse-Risk Cytogenetics AML
Gabriele Greve, Julia Schüler, Björn A. Grünig, Bettina Bergerich, Julia stomper, Dennis Zimmer, Lea Gutenkunst, Ulrike Bönisch, Ruth Meier, Nadja Blaguitko-Dorf, Olga Grishina, Dietmar Pfeifer, Dieter Weichenhan, Christoph Plass, and Michael Lübert
These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.
See related commentary, p. 813

847 3D Functional Genomics Screens Identify CREBBP as a Targetable Driver in Aggressive Triple-Negative Breast Cancer
This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.
TABLE OF CONTENTS

METABOLISM AND CHEMICAL BIOLOGY

860 Targeting p300/CBP Attenuates Hepatocellular Carcinoma Progression through Epigenetic Regulation of Metabolism
Ling-Yan Cai, Shi-Jie Chen, Sen-Hao Xiao, Qin-Juan Sun, Chen-Hong Ding, Bai-Nan Zheng, Xin-Yan Zhu, Shu-Qing Liu, Feng Yang, Ya-Xi Yang, Bing Zhou, Cheng Luo, Xin Zhang, and Wei-Fen Xie

This study demonstrates p300/CBP as a critical epigenetic regulator of glycolysis-related metabolic enzymes in HCC and identifies the p300/CBP inhibitor B029-2 as a potential therapeutic strategy in this disease.

873 Combinatorial Normalization of Liver-Derived Cytokine Pathways Alleviates Hepatic Tumor-Associated Cachexia in Zebrafish
Fei Fei, Shaoyang Sun, Qiang Li, Zhou Pei, Lei Wang, Ranran Zhang, Feihong Luo, Min Yu, and Xu Wang

Disruption of leptin signaling with normalized Igf1 expression significantly rescues anorexia, muscle wasting, and adipose wasting in Ras- and Myc-driven zebrafish models of HCC.

MOLECULAR CELL BIOLOGY

885 Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300
Thomas K. Sin, Guohua Zhang, Zicheng Zhang, James Z. Zhu, Yan Zuo, Jeffrey A. Frost, Min Li, and Yi-Ping Li

These findings demonstrate that prevention of p38β MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cachexia, muscle wasting, and adipose wasting in vivo, providing the first evidence of MDMX recruitment of UbcH5c to facilitate MDM2 E3 Ligase
Qingnan Wu, Yiren Cao, Xiaohan Gao, Lijie Huang, Dezuo Dong, Weimin Zhang, Wenchang Xiao, De-Zuo Dong, Weimin Zhang, Wenchang Xiao, Qiang Li, Zhou Pei, Lei Wang, Ranran Zhang, Feihong Luo, Min Yu, and Xu Wang

This study demonstrates p300/CBP as a critical epigenetic regulator of glycolysis-related metabolic enzymes in HCC and identifies the p300/CBP inhibitor B029-2 as a potential therapeutic strategy in this disease.

MDMX recruits UbcH5c to facilitate MDM2 E3 Ligase Activity and Subsequent p53 Degradation in Vivo
Jing Yang, Aiwen Jin, Jing Han, Xin Chen, Junnian Zheng, and Yanping Zhang

This study provides the first in vivo evidence of MDMX facilitating MDM2-mediated p53 degradation, clarifying its role in the regulation of this critical tumor suppressor.

A GRN Autocrine-Dependent FAM135B/AKT/mTOR Feedforward Loop Promotes Esophageal Squamous Cell Carcinoma Progression
Dezuo Dong, Weimin Zhang, Wenchang Xiao, Qingnan Wu, Yiren Cao, Xiaohan Gao, Lijie Huang, Yan Wang, Jie Chen, Weihu Wang, and Qinmin Zhan

These findings investigate the mechanisms of FAM135B in promoting ESCC progression and suggest new potential prognostic biomarkers and therapeutic targets in patients with ESCC.

TUMOR BIOLOGY AND IMMUNOLOGY

923 DMDRM1-Mediated Regulation of m6A-Modified CDK4 by m6A Reader IGF2BP3 Drives ccRCC Progression
Yunmin Gu, Shaoxi Niu, Yang Wang, Lijiang Duan, Yongbo Pan, Zhou Tong, Xu Zhang, Zhenyu Yang, Bo Peng, Xiaodong Wang, Xiaoan Han, Yuxin Li, Tianyou Cheng, Yajuan Liu, Lina Shang, Tongfeng Liu, Xiwang Yang, Minxuan Sun, Siyuan Jiang, Chang Zhang, Ning Zhang, Qinong Ye, and Shan Gao

This study demonstrates that the lncRNA DMDRM1 acts as a cofactor for IGF2BP3 to stabilize target genes in an m6A-dependent manner, thus exerting essential oncogenic roles in ccRCC.

935 Robust p53 Stabilization Is Dispensable for Its Activation and Tumor Suppressor Function
Ning Kon, Michael Churchill, Huan Li, Siddhartha Mukherjee, James J. Manfredi, and Wei Gu

Although robust p53 stabilization is critical for acute p53 responses such as DNA damage, this study underscores the important role of low basal p53 protein levels in p53 activation and tumor suppression.

945 GSK3β-Mediated Expression of CUG-Translated WT1 Is Critical for Tumor Progression

These findings demonstrate that CUG-translated WT1 plays an oncogenic role in vivo, and GSK3β-mediated phosphorylation of cugWT1 induces its ubiquitination and degradation in concert with FBXW8.

968 Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment

This study reveals unrecognized roles of LXR in the transcriptional control of the tumor microenvironment and suggests use of a synthetic LXR agonist as a novel therapeutic strategy to stimulate antitumor activity.
Cancer Cell Fitness Is Dynamic
KIF15-Mediated Stabilization of AR and AR-V7
Therapeutic Targeting of Metadherin Suppresses...
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>Identifying Clear Cell Renal Cell Carcinoma Coexpression Networks Associated with Opioid Signaling and Survival</td>
<td>Joseph R. Scarpa, Renzo G. DiNatale, Roy Mano, Andrew W. Silagy, Fengshen Kuo, Takeshi Irie, Patrick J. McCormick, Gregory W. Fischer, A. Ari Hakimi, and Joshua S. Mincer</td>
</tr>
<tr>
<td>1111</td>
<td>MUC1-C Activates the BAF (mSWI/SNF) Complex in Prostate Cancer Stem Cells</td>
<td>Masayuki Hagiwara, Yota Yasumizu, Nami Yamashita, Hasan Rajabi, Atsushi Fushimi, Mark D. Long, Wei Li, Atrayee Bhattacharya, Rehan Ahmad, Mototsugu Oya, Song Liu, and Donald Kufe</td>
</tr>
<tr>
<td>1135</td>
<td>Turnover Modulates the Need for a Cost of Resistance in Adaptive Therapy</td>
<td>Maximilian A.R. Strobl, Jeffrey West, Yannick Viossat, Mehdi Damaghi, Mark Robertson-Tessi, Joel S. Brown, Robert A. Gatenby, Philip K. Maini, and Alexander R.A. Anderson</td>
</tr>
<tr>
<td>1148</td>
<td>Patterns of Human Leukocyte Antigen Class I and Class II Associations and Cancer</td>
<td>Zhiwei Liu, Andrey Derkach, Kelly J. Yu, Meredith Yeager, Yu-Sun Chang, Chien-Jen Chen, Ulf Gyllensten, Qing Lan, Mei-Hsuan Lee, James D. McKay, Nathaniel Rothman, Hwai-I Yang, Allan Hildesheim, and Ruth M. Pfeiffer</td>
</tr>
<tr>
<td>1153</td>
<td>Time-Dependent Effects of Oral Contraceptive Use on Breast, Ovarian, and Endometrial Cancers</td>
<td>Torgny Karlsson, Therese Johansson, Julia Höglund, Weronica E. Ek, and Åsa Johansson</td>
</tr>
<tr>
<td>1163</td>
<td>Racial/Ethnic Disparities in All-Cause Mortality among Patients Diagnosed with Triple-Negative Breast Cancer</td>
<td>Fei Wang, Wei Zheng, Christina E. Bailey, Ingrid A. Mayer, Jennifer A. Pietenpol, and Xiao-Ou Shu</td>
</tr>
<tr>
<td>1171</td>
<td>Interactive Classification of Whole-Slide Imaging Data for Cancer Researchers</td>
<td>Sanghoon Lee, Mohamed Amgad, Pooya Mobadersany, Matt McCormick, Brian P. Pollack, Habiba Ellandy, Hagar Hussein, David A. Gutman, and Lee A.D. Cooper</td>
</tr>
<tr>
<td>1178</td>
<td>The FABRIC Cancer Portal: A Ranked Catalogue of Gene Selection in Tumors Over the Human Coding Genome</td>
<td>Guy Kelman, Nadav Brandes, and Michal Linial</td>
</tr>
</tbody>
</table>

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Adaptive cancer therapy aims to delay cancer progression by exploiting competition between drug-sensitive and -resistant cells in the tumor. Drug dosing is adapted in a patient-specific fashion to maintain drug-sensitive cells that competitively suppress resistance (blue). This is in contrast to standard-of-care cancer treatment regimens that maximize cell kill and thereby cause the rapid competitive release of drug-resistant cells (orange). But, when will adaptive therapy work? Shown is a collage of so-called "phase plane" visualizations of a mathematical model with which the authors address this question. Each triangle represents a different parameterization. It was found that resource availability, resistance fraction, resistance cost, and cellular turnover integrate to modulate intratumoral competition. For details, see article by Strobl and colleagues on page 1135.