TABLE OF CONTENTS

BREAKING INSIGHTS
1187 Highlights from Recent Cancer Literature

REVIEWS
1189 Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer
Natalie J. Serkova, Kristine Glunde, Chad R. Haney, Mohammed Farhoud, Alexandra De Lille, Elizabeth F. Redente, Dmitri Simberg, David C. Westerly, Lynn Griffin, and Ralph P. Mason

1201 Macrophage-Based Approaches for Cancer Immunotherapy
Nicholas R. Anderson, Nicholas G. Minutolo, Saar Gill, and Michael Klichinsky

CONTROVERSY AND CONSENSUS
1209 Is COVID-19–Induced Platelet Activation a Cause of Concern for Patients with Cancer?
Lenard M. Lichtenberger and K. Vinod Vijayan

CANCER RESEARCH HIGHLIGHTS
1212 Being Small and Intronic: miRNAs That Count!
George A. Calin
See related article, p. 1308

1214 Which Holds the Key to BRCAness: Inability to Repair the Break, Protect the Fork, or Prevent the Gap?
Christine E. Canman
See related article, p. 1388

GENOME AND EPIGENOME
1216 A Transcriptional Regulatory Loop of Master Regulator Transcription Factors, PPARG, and Fatty Acid Synthesis Promotes Esophageal Adenocarcinoma
Sai Ma, Bo Zhou, Qian Yang, Yunzhi Pan, Wei Yang, Stephen J. Freedland, Ling-Wen Ding, Michael R. Freeman, Joshua J. Breunig, Neil A. Bhowmick, Jian Pan, H. Phillip Koeffler, and De-Chen Lin

These findings elucidate a transcriptional feedback loop linking epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma, indicating that blocking this feedback loop could be a potential therapeutic strategy in high-risk individuals.

1230 Tumor Mutational Burden Is Polygenic and Genetically Associated with Complex Traits and Diseases
Xiwei Sun, Angli Xue, Ting Qi, Dan Chen, Dandan Shi, Yang Wu, Zhili Zheng, Jian Zeng, and Jian Yang
This study provides evidence for a polygenic architecture of tumor mutational burden and opens an avenue for the use of whole-genome germline genetic variations to stratify patients with cancer for immunotherapy.

METABOLISM AND CHEMICAL BIOLOGY
1240 Oncogenic N-Ras Mitigates Oxidative Stress-Induced Apoptosis of Hematopoietic Stem Cells
Gina M. Ney, Kevin B. Yang, Victor Ng, Lu Liu, Meiling Zhao, Wun Kuk, Lila Alaka, Leilani Sampang, Adam Ross, Morgan A. Jones, Xi Jin, Laura M. McKay, Hadie Evarts, and Qing Li
Targeting oncogenic N-ras-mediated reduction of ROS in hematopoietic stem cells through inhibition of the noncanonical Ras effector PKC may serve as a novel strategy for treatment of leukemia and other Ras-mutated cancers.

1252 Targeting ACS52 with a Transition-State Mimetic Inhibits Triple-Negative Breast Cancer Growth
Katelyn D. Miller, Katherine Pniewski, Caroline E. Perry, Sara B. Papp, Joshua D. Shaffer, Jesse N. Velasco-Silva, Jessica C. Cisciano, Tomas M. Aramburu, Yellamelli V.V. Srikanth, Joel Cassel, Emmanuel Skordalakes, Andrew V. Kossenkov, Joseph M. Salvino, and Zachary T. Schug
These findings suggest that targeting acetate metabolism through ACS52 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.
TABLE OF CONTENTS

MOLECULAR CELL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1265</td>
<td>Hypoxia-Induced Suppression of Alternative Splicing of MBD2 Promotes Breast Cancer Metastasis via Activation of FZD1</td>
<td>Zhaoji Liu, Linchong Sun, Yongping Cai, Shengqi Shen, Tong Zhang, Nana Wang, Gongwei Wu, Wenhao Ma, Shi-Ting Li, Caixin Suo, Yijie Hao, Wei-Dong Jia, Gregg L. Semenza, Ping Gao, and Huafeng Zhang</td>
<td>This study defines the opposing roles and clinical relevance of MBD2a and MB2c, two MB2 alternative splicing products, in hypoxia-driven breast cancer metastasis.</td>
</tr>
<tr>
<td>1279</td>
<td>MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters</td>
<td>Oren Yakovian, Julia Sajman, Rand Arafah, Yair Neve-Oz, Michal Alon, Yardena Samuels, and Eilon Sherman</td>
<td>Nanoscale dynamic organization of WT and mutant NRas relative to BRAF serves as a regulatory mechanism for NRas signaling and may be a viable therapeutic target for its sensitivity to MEK.</td>
</tr>
<tr>
<td>1293</td>
<td>PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis</td>
<td>Lilia Gheghiani, Lei Wang, Youwei Zhang, Xavier T.R. Moore, Jinglei Zhang, Steven C. Smith, Yijun Tian, Liang Wang, Kristi Turner, Colleen K. Jackson-Cook, Nitis D. Mukhopadhyay, and Zheng Fu</td>
<td>These findings establish roles for PLK1 as a potent proto-oncogene and a CIN gene and provide insights for the development of effective treatment regimens across PLK1-overexpressing and CIN-positive cancers.</td>
</tr>
</tbody>
</table>
| 1308 | Systematic Analysis of Intronic miRNAs Reveals Cooperativity within the Multicomponent FTX Locus to Promote Colon Cancer Development | Zhi Hao Kwok, Bin Zhang, Xiao Hong Chew, Jia Jia Chan, Velda Teh, Henry Yang, Dennis Kappel, and Yvonne Tay | Our study illustrates the functional relationships between individual components of multigenic loci in regulating cancer progression.
See related commentary, p. 1212 |
| 1321 | USP24 is a Cancer-Associated Ubiquitin Hydrolase, Novel Tumor Suppressor, and Chromosome Instability Gene Deleted in Neuroblastoma | Tibor Bedekovics, Sajad Hussain, Ying Zhang, Asma Ali, Young J. Jeon, and Paul J. Galardy | This study identifies the chromosome instability gene USP24 as frequently deleted in neuroblastoma and provides important insight into the pathogenesis of this aggressive childhood cancer. |

TUMOR BIOLOGY AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1332</td>
<td>Differential Regulation of Cancer Progression by CDK4/6 Plays a Central Role in DNA Replication and Repair Pathways</td>
<td>Meilu Dai, Julien Boudreault, Ni Wang, Sophie Poulet, Girija Daliah, Gang Yan, Alaa Moamer, Sergio A. Burgos, Siham Sabri, Suhad Ali, and Jean-Jacques Lebrun</td>
<td>In-depth transcriptomic analysis identifies cyclin-dependent kinases CDK4 and CDK6 as regulators of metastasis through distinct signaling pathways and reveals the DNA replication/repair pathway as central in promoting these effects.</td>
</tr>
<tr>
<td>1347</td>
<td>Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition</td>
<td>Vishnu Kumarasamy, Paris Vail, Ram Nambiar, Agnieszka K. Witkiewicz, and Erik S. Knudsen</td>
<td>This work provides a mechanistic insight toward understanding the functional roles of multiple cell cycle regulators that drive plasticity and sensitivity to CDK4/6 inhibition.</td>
</tr>
<tr>
<td>1361</td>
<td>A Positive Feedback Loop of AKR1C3-Mediated Activation of NF-κB and STAT3 Facilitates Proliferation and Metastasis in Hepatocellular Carcinoma</td>
<td>Qingqing Zhou, Wei Tian, Zhiyuan Jiang, Tingting Huang, Chao Ge, Tengfei Liu, Fangyu Zhao, Taoyang Chen, Ying Cui, Hong Li, Ming Yao, Jijun Li, and Hua Tian</td>
<td>These findings elucidate a novel AKR1C3-driven signaling loop that regulates proliferation and metastasis in HCC, providing potential prognostic and therapeutic targets in this disease.</td>
</tr>
<tr>
<td>1375</td>
<td>Enhanced Antitumor Immunity via Endocrine Therapy Prevents Mammary Tumor Relapse and Increases Immune Checkpoint Blockade Sensitivity</td>
<td>Gonzalo R. Sequeira, Ana Sabores, Tomás Dalot-Moreno, Ramiro M. Perrotta, Gabriela Pataccini, Silvia I. Vanzulli, Maria L. Polo, Derek C. Radisky, Carol A. Sartorius, Virginia Novaro, Caroline A. Lamb, Gabriel A. Rabinovich, Mariana Salatino, and Claudia Lanari</td>
<td>Antiprogestin therapy induces immunogenic tumor cell death in PRA-overexpressing tumors, eliciting an adaptive immune memory response that protects mice from future tumor recurrence and increases sensitivity to PD-L1 blockade.</td>
</tr>
</tbody>
</table>
| 1388 | Replication Gaps Underlie BRCA Deficiency and Therapy Response | Nicholas J. Panzarino, John J. Krais, Ke Cong, Min Peng, Michelle Mosqueda, Sumeet U. Nayak, Samuel M. Bond, Jennifer A. Calvo, Mihir B. Doshi, Matt Bere, Jianhong Ou, Bin Deng, Lihua J. Zhu, Neil Johnson, and Sharon B. Cantor | This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype “BRCaness,” yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.
See related Commentary, p. 1214 |

Downloaded from cancerres.aacrjournals.org on August 21, 2021. © 2021 American Association for Cancer Research.
Dual Inhibition of MEK and AXL Targets Tumor Cell Heterogeneity and Prevents Resistant Outgrowth Mediated by the Epithelial-to-Mesenchymal Transition in NSCLC

Jessica M. Konen, B. Leticia Rodriguez, Aparna Padhye, Joshua K. Ochieng, Laura Gibson, Lixia Diao, Natalie W. Fowlkes, Jared J. Fradette, David H. Peng, Robert J. Cardnell, Jeffrey J. Kovacs, Jing Wang, Lauren A. Byers, and Don L. Gibbons

This study shows that a novel combination of MEK and AXL inhibitors effectively bypasses EMT-mediated drug resistance in KRAS/p53-mutant non–small cell lung cancer by targeting EMT subpopulations, thereby preventing tumor cell survival.

Targeting the IRAK1–S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma

Lizhen Liu, Sailan Liu, Peng Deng, Yujing Liang, Rong Xiao, Lin-Quan Tang, Jinghong Chen, Qiu-Yan Chen, Peiyong Guan, Shu-Mei Yan, Xiangliang Huang, Jing Han Hong, Jianfeng Chen, Yichen Sun, Bin Tean Teh, Qiang Yu, Hai-Qiang Mai, and Jing Tan

Deregulation of the IRAK1–S100A9 axis correlates with poor prognosis, contributes to chemoresistance in nasopharyngeal carcinoma, and can be targeted by pacritinib to overcome chemoresistance in nasopharyngeal carcinoma.

ABOUT THE COVER

Cancer is a heterogeneous disease with extensive genetic complexity. The circles in the middle represent a normal cell with germline variations. In cancer, germline variants can affect the tumor mutational burden, both of which contribute to the emergence of different types of cancer cells. For details, see article by Sun and colleagues on page 1230.