Replication Gaps Underlie BRCA Deficiency and Therapy Response

Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, “BRCA-ness,” and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies.

Significance: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype “BRCA-ness,” yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.

See related commentary by Canman, p. 1214

Introduction

Mutations in the hereditary breast cancer genes, BRCA1 and BRCA2, first demonstrated that cancer is a genetic disease in which susceptibility to cancer could be inherited (1). In addition to breast cancer, mutated BRCA1 or BRCA2 cause a predisposition to other cancer types, including ovarian, pancreatic, and colorectal cancers. Importantly, cancers with mutated BRCA genes are hypersensitive to cisplatin, a first-line anticancer chemotherapy that has been the standard of care for ovarian cancer for more than 40 years (2). BRCA-deficient cancers are thought to be hypersensitive to cisplatin due to their inability to repair cisplatin-induced DNA double-strand breaks (DSB) by homologous recombination (HR; ref. 3). Accordingly, it is proposed that the DSBs are created when replication forks collide with the cisplatin-DNA cross-links, causing the fork to collapse into DSBs (4). This broken fork model was further supported by reports that mutations in the BRCA genes also lead to defective fork protection (FP), which is thought to render forks vulnerable to fork collapse and subsequent DSB induction (5–7). Correspondingly, chemoresistance in BRCA cancer is proposed to occur when either HR or FP is restored, with the latter largely preventing DSBs and, therefore, eliminating the requirement for HR. Importantly, this hypersensitive phenotype is known as BRCAness and is thought to arise in a range of cancers via mutations in genes that function similar to BRCA1 and BRCA2 in DSB repair.

However, recent findings challenge the fundamental premise that DSBs are the critical lesion for cisplatin sensitivity. Notably, DNA cross-links do not appear to initially cause replication forks to collapse and can be bypassed (8, 9). Moreover, in the majority of genetic models currently reported, restored FP fails to restore cisplatin resistance, suggesting the cisplatin lesions do not collapse forks, and therefore, calls into question how cisplatin cross-links could be converted into DSBs (4, 10). Most saliently, indicating that the fundamental sensitizing lesion may in fact not be a DSB, reports indicate even HR-proficient cells can nevertheless display hypersensitivity to cisplatin and other genotoxic agents (11–13). Moreover, in addition to cisplatin, BRCA-deficient cells and patient tumors have recently been found to be hypersensitive to a wide range of genotoxic agents that were previously thought to be mechanistically distinct, including doxorubicin, PARP 1 inhibition, and other first-line agents, even including the platinum analog oxaliplatin, which is not thought to generate DSBs (4). Moreover, recent reports indicate that cisplatin toxicity in triple-negative breast cancer is unrelated to loss of DNA repair factors (15). Taken together, these findings indicate an opportunity to revise the current framework for both BRCAness, as well as the mechanism of action of first-line genotoxic chemotherapies.

Here, we propose a model for genotoxic chemotherapy in which hypersensitivity derives from ssDNA formation, and not from the failure to repair or prevent the induction of DSBs due to defects in HR or FP. Specifically, we observed in hypersensitive BRCA-deficient cells that ssDNA gaps developed because DNA replication was not effectively restrained in response to genotoxic stress. Moreover, we observed ssDNA gaps could be suppressed by either restored fork restraint or by gap filling, both of which conferred resistance to...
genotoxic therapy in tissue culture and BRCA patient tumors. In contrast, we observed that cells with proficient HR and FP are, nevertheless, hypersensitive to chemotherapy if ssDNA gaps remain. Finally, we found that when apoptosis is inhibited, DSBs are no longer detectable after therapy, suggesting that DSBs are instead created by the programmed cell death nucleolytic machinery and that ssDNA gaps are the critical lesions that determine therapy response. Accordingly, we propose that ssDNA replication gaps underlie the BRCA cancer phenotype, “BRCaness,” and are fundamental to the mechanism of action of genotoxic chemotherapies.

Materials and Methods

Cell culture
PEO1, C4-2, VC-8, and MDA-MB-436 cell lines were cultured in DMEM + 10% FBS + 1% penicillin–streptomycin. HCC1937 BRCA1-deficient and HCC1937 + wild-type (WT) BRCA1 were cultured in RPMI1640 + 1-glutamine + 10% FBS + 1% penicillin–streptomycin. The Fanconi anemia RAD51 T131P cells were cultured in DMEM + 15% FBS + GlutaMAX supplemented with nonessential amino acids. All cell lines were maintained in MycosoLife 100 free with the MycosoLife 100 medium according to the manufacturer’s instructions (Lonza), with the most recent test performed in September 2020. PEO1 and C4-2 cells were obtained from the Toshi Taniguchi laboratory (Tokai University School of Medicine, Tokyo, Japan) in September 2014, VC-8 cells were obtained from the Maria Jasim laboratory (Memorial Sloan Kettering Cancer Center, New York, NY) in September 2014, HCC1937 cells were obtained from the Lee Zhou laboratory (Massachusetts General Hospital, Harvard University, Boston, MA) in October 2017, and the RAD51 T131P cells were obtained from the Agata Smogorzewska laboratory (The Rockefeller University, New York, NY) in January 2019. The MDA-MB-436 cells were obtained from the ATCC and validated by short tandem repeat profiling. Cells were validated by Western blot and/or CellTiter-Glo toxicity assays as described in the article. Cells were briefly expanded to frozen stocks and used in experiments within 10 passages.

DNA fiber assays
DNA fiber assays were performed as described previously. Briefly, cells were plated at 10^3 cells per 10-cm dish and allowed to adhere for 36 hours. Subsequently, DNA was labeled for 30 minutes with 50 μmol/L 5-iodo-2’-deoxyuridine (IdU) and washed with PBS, and treated with 50 μmol/L 5-chloro-2’-deoxyuridine (CldU) and replication stress depending on the assay. For fork restraint assays, cells were exposed to 50 μmol/L CldU with 0.5 mmol/L IdU for 2 hours. Subsequently, cells were permeabilized with CSK buffer (100 mmol/L NaCl, 10 mmol/L MOPS, 3 mmol/L MgCl2, pH 7.2, 300 mmol/L sucrose, and 0.5% Triton X-100) at room temperature for 8 minutes, followed by S1 nuclease (20 U/mL) in S1 buffer (30 mmol/L sodium acetate, pH 4.6, 10 mmol/L zinc acetate, 5% glycerol, and 50 mmol/L NaCl) for 30 minutes at 37°C. Finally, cells were collected by scraping, pelleted, and resuspended in 100–500 μL PBS; 2 μL of cell suspension was spotted on a positively charged slide and lysed and processed as described in the DNA fiber assay section above.

Patient-derived xenograft methods
PNXX0204 was derived at Fox Chase Cancer Center (Philadelphia, PA) under Institutional Review Board- and Institutional Animal Care and Use Committee–approved protocols. Patient-derived xenograft (PDX) tumors were grown in NOD.Cg-Ptkdcscid Il2rgtm1Wjl/Sj1 (NSG) mice. Cisplatin-resistant PDX tumors were obtained from mice after tumors progressed on serial treatments of 6 mg/kg cisplatin. The tumors were harvested at approximately 500 mm^3 and dissociated in 0.2% collagenase and 0.33 mg/mL dispase solution for 3 hours at 37°C. The dissociated cells were maintained at 37°C in RPMI1640 + 10% FBS and used for DNA fiber assays within 24 hours of tumor extraction. DNA fiber and S1 nuclease fiber assays were performed as described above.

Results
To analyze the mechanism underlying the hypersensitivity of BRCA-deficient cancers to chemotherapy, we monitored the immediate response of DNA replication forks to replication stress with DNA fiber assays. Following the incorporation of nucleotide analogs into nascent DNA as the cells replicated in the presence or absence of stress, the progression of replication forks was detected by immunofluorescence. Specifically, we measured the lengths of the labeled DNA when the cells were exposed to 0.5 mmol/L HU, a dose that induces replication stress without fully depleting nucleotide pools (17). The
condition yields high-quality DNA fibers and has been used as a model to study fork responses to genotoxic therapy, such as cisplatin, which yields lower quality fibers because cisplatin covalently damages DNA (17, 18). We compared the parental PEO1 cancer cell line, which expresses a truncated BRCA2 protein and is hypersensitive to cisplatin, with the BRCA2-proficient PEO1 reversion cell line, C4-2, which expresses a full-length BRCA2 protein and is resistant to cisplatin (Fig. 1A; ref. 19). Both cell lines were incubated with the DNA analog, IdU, for 30 minutes as an internal control to label regions of active replication, followed by the DNA analog, CldU, for 2 hours in the presence of 0.5 mM HU to monitor the immediate response of DNA replication to genotoxic stress. An additional set of cells was exposed to ClDU without HU to serve as untreated controls.

We observed that the BRCA2-deficient PEO1 cells failed to fully restrain replication in response to HU when compared with the BRCA2-proficient C4-2 cells, as indicated by the longer CldU tracks observed in PEO1 compared with C4-2 (Fig. 1B). As expected, both untreated controls displayed substantially longer CldU tracks than either of the HU-treated cells (Supplementary Fig. S1A and S1B), therefore, indicating that replication is restrained after stress, and that this restraint is less effective in BRCA2-deficient cells. Moreover, we observed similar replication restraint defects in other BRCA-deficient cells that are hypersensitive to cisplatin, including the BRCA2-deficient Chinese hamster cell line VC-8 (6), BRCA2-depleted C4-2 cells, and BRCA1-deficient breast cancer lines (HCC1937 and MDA-MB-436; Supplementary Fig. S1C–S1H). We also observed that the replication restraint defects were not exclusive to HU, but also detected following cisplatin treatment (Supplementary Fig. S1I). In agreement with the DNA fiber assays, analysis of global cellular DNA replication based on incorporation of the analog EdU similarly indicated that BRCA2-deficient cells failed to properly restrain DNA replication during stress (Fig. 1C).

We hypothesized that failure to fully restrain replication during stress in BRCA-deficient cells would result in poorly replicated regions that contain ssDNA. To test this hypothesis, we performed the DNA fiber assay followed by incubation with SI nuclease. SI cuts at ssDNA regions and secondary DNA structures, but does not cut dsDNA (20). Indeed, labeled nascent DNA tracks were SI sensitive in BRCA2-deficient PEO1 cells, but not in the BRCA2-proficient C4-2 cells (Fig. 1B). These SI-sensitive nascent DNA regions were also degraded after continued exposure to replication stress, indicating that nascent DNA in regions behind the fork is degraded under continued stress (Fig. 1B). Similar to BRCA2, BRCA1-deficient cancer cells (HCC1937 and MDA-MB-436) also displayed DNA replication tracks that were sensitive to SI nuclease after treatment with HU (Supplementary Fig. S1I). In addition, we employed a nondenaturing DNA fiber assay that detects ssDNA in regions of active DNA replication and confirmed that following HU, ssDNA (detectable by the ClDU antibody

Figure 1.

BRCA2-deficient cancer cells fail to restrain replication in the presence of stress, generating regions of ssDNA gaps that are destroyed after continued exposure. A, Western blot analysis detects truncated BRCA2 protein in BRCA2-deficient PEO1 cells and detects full-length BRCA2 protein in BRCA2-proficient C4-2 cells that are derived from PEO1 cells (left). Cell survival assay confirms PEO1 cells are hypersensitive to cisplatin compared with C4-2 cells (right). B, Schematic and quantification of CldU track length (white) shows that PEO1 cells fail to arrest replication in the presence of stress. These regions are degraded by SI nuclease (light gray) and are also destroyed after continued exposure to replication stress (dark gray). Each dot represents one fiber. Experiments were performed in biological triplicate with at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann–Whitney test; †††, P < 0.001. Mean and 95% confidence intervals are shown. C, Schematic and quantification of nuclear imaging identifies a greater percentage of EdU-positive cells in PEO1 as compared with C4-2, ††, P < 0.05 as determined by t test of biological triplicate experiments. D, Nondenaturing fiber assay identifies exposed ssDNA adjacent to newly replicating regions after stress in PEO1, but not C4-2 cells. Regions of active replication were detected with EdU Click chemistry. †††, P < 0.01 as determined by t test of biological triplicate experiments. E, Model of fiber assay interpretation. NS, not significant.
only in exposed ssDNA regions) was present adjacent to newly replicating regions (detected as EdU signal) in the BRCA2-deficient PEO1 cells, but not in the BRCA2-proficient C4-2 cells (Fig. 1D). In contrast, ssDNA was not detected in the untreated cells (Supplementary Fig. 51K). Thus, BRCA2-deficient cancer cells fail to fully restrain replication in the presence of stress, creating ssDNA regions (Fig. 1E) that are degraded after additional exposure to stress.

We hypothesized that ssDNA gaps confer chemosensitivity in BRCA cancer, and that mechanisms of chemoresistance would suppress these gaps. Indeed, we previously found that depletion of the chromatin remodeling enzyme CHD4 confers cisplatin resistance in BRCA2-deficient PEO1 cells (Fig. 2A; ref. 21). Therefore, we tested whether CHD4 depletion would reduce ssDNA gaps in PEO1 cells in the S1 fiber assay. When CHD4 was depleted, we observed protection from S1 nuclease after HU compared with the PEO1 nonsilencing control (Fig. 2B). Experiments were performed in biological triplicate with at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann–Whitney test; *, P < 0.001. Mean and 95% confidence intervals are shown. A schematic and quantification of nuclear imaging identifies a greater percentage of EdU-positive cells in CHD4-depleted PEO1 cells as compared with NSC. **, P < 0.01 as determined by t test of biological duplicate experiments. D, Non-denaturing fiber assay identifies ssDNA adjacent to newly replicated regions after stress is reduced when CHD4 is depleted in PEO1 cells. Regions of active replication were detected with EdU Click chemistry. *, P < 0.05 as determined by t test of biological duplicate experiments. E, Model of fiber assay interpretation. NS, not significant.

In contrast, ssDNA was not detected in the untreated cells (Supplementary Fig. 52B–52D). Moreover, in agreement with the fiber assays, analysis of global cellular replication by EdU incorporation demonstrated that CHD4-depleted PEO1 cells increased replication after HU treatment as compared with PEO1 or C4-2 control cells (Fig. 2C). In addition, we also observed a significant reduction in ssDNA adjacent to regions of active replication in the non-denaturing DNA fiber assay (Fig. 2D; Supplementary Fig. S2E). Thus, ssDNA gap formation was suppressed in chemoresistant BRCA2-deficient cells with CHD4 depletion, but fork restraint was not restored (Fig. 2E). Taken together, these data indicate that chemoresistant cells display either restored fork restraint, as observed in the BRCA2 reversion cell line C4-2, or continuous replication without ssDNA gap formation, as in the CHD4-depleted PEO1 cells (Fig. 2E).

Our data indicate that suppression of ssDNA replication gaps in BRCA2-deficient cancer could confer chemoresistance. To address this possibility, we sought to identify additional genes similar to CHD4 that confer chemoresistance when depleted in BRCA2-deficient cells, and subsequently determine whether gaps were suppressed. Therefore, we performed quantitative mass spectrometry proteomics to compare the CHD4 interactome in BRCA2-deficient and BRCA2-proficient cells after cisplatin treatment (Fig. 3A). Indeed, in addition to known CHD4 interactors (22), we also observed that CHD4 interacted with two proteins associated with chemoresistance in BRCA2-deficient cells: EZH2, which confers chemoresistance when inhibited, and
two-tailed Mann Whitney test; *P < 0.05, **P < 0.01, ***P < 0.001. Mean and 95% confidence intervals are shown. NS, not significant.

Figure 3. Suppression of ssDNA gaps accurately predicts poor therapy response in both cell culture and patient xenografts. A, Overview of the SILAC CHD4 immunoprecipitation experiment. B, SILAC immunoprecipitation reveals that CHD4 interacts with ZFHX3, FEN1, and EZH2 after cisplatin treatment. Red and blue circles are proteins significantly enriched in the CHD4 network of either PEO1 or C4-2 cells. Green (X) represents CHD4. Yellow circles are known CHD4 interacting partners from the NurD complex, including MTA1, HDAC1, MTA2, and HDAC2 (22); ZFHX4 was also identified and is a known CHD4 interacting partner (26). Black plus signs represent proteins not significantly enriched in the CHD4 network of either PEO1 or C4-2. Three biological replicates were performed; see Materials and Methods for statistical analysis. C, Western blot analysis confirms ZFHX3 is depleted by short hairpin RNA (shRNA) in PEO1 cells as compared with nonsilencing control (NSC). Cell survival assay confirms PEO1 cells with depleted ZFHX3 are resistant to cisplatin compared with PEO1 NSC. D, Reduced ZFHX3 mRNA levels predict poor patient response to therapy (progression-free survival) for patients with ovarian cancer with germline BRCA2 deficiency from TCGA database (P < 0.02). Shaded area represents the 95% confidence interval. E, Schematic and quantification of CldU track length shows that depletion of CHD4 [shRNA(B)], ZFHX3, or FEN1, or inhibition of EZH2, increases replication in the presence of stress (white) and protects nascent DNA from S1 nuclease (gray). F, Schematic and quantification of CldU track length shows S1 fiber sensitivity is suppressed in BRCA1-deficient PDXs that have acquired chemoresistance. Each dot represents one fiber. Experiments were performed in biological triplicate with at least 100 fibers per replicate; the xenograft fiber assay was performed in duplicate. Statistical analysis according to two-tailed Mann–Whitney test; ***, P < 0.001. Mean and 95% confidence intervals are shown. NS, not significant.

FEN1, which confers chemoresistance when depleted, but is synthetic lethal when knocked out (Fig. 3B; refs. 21, 23–25). In BRCA2-deficient cells, we also found enrichment of the known CHD4-interacting protein, ZFHX3 (26), and that ZFHX3 depletion enhanced cisplatin resistance in PEO1 cells (Fig. 3C). Furthermore, analysis of The Cancer Genome Atlas (TCGA) patients revealed that low ZFHX3 mRNA levels predicted poor tumor-free survival in patients with ovarian cancer with germline BRCA2 deficiency (Fig. 3D), as previously found for CHD4, EZH2, and FEN1 (21, 23, 24). Strikingly, as found for CHD4 depletion, we observed that depletion of ZFHX3 or FEN1, or inhibition of EZH2, increased replication in BRCA2-deficient cells in the presence of HU, and as shown in the S1 nuclease assay, ssDNA gaps were suppressed (Fig. 3E; Supplementary Fig. S2F). Together, these findings suggest that depletion of CHD4, EZH2, FEN1, and ZFHX3 suppresses ssDNA gaps during stress to confer chemoresistance.

Next, we tested whether ssDNA gaps could predict chemosensitivity and resistance in BRCA patient tumor samples. Specifically, we utilized a triple-negative breast cancer PDX, PXN0204, from a patient with a hemizygous germline BRCA1 mutation (1105insTC); the WT BRCA1 allele was lost in the tumor, following a loss of heterozygosity model (Supplementary Fig. S2G). PXN0204 tumors were originally hyper-sensitive to cisplatin treatment. After several rounds of cisplatin treatment and serial passage in mice, resistant tumors developed. The sensitive and resistant tumors were then tested for S1 sensitivity, with PEO1 (Fig. 3F) and MDA-MB-436 (Supplementary Fig. S2H) xenografts serving as controls. After HU treatment, we observed that the DNA fibers of cisplatin-sensitive PDX cells were degraded by S1 nuclease, but the fibers of cisplatin-resistant PDX cells were not, indicating ssDNA gaps had been suppressed in the resistant patient samples (Fig. 3F). Notably, in resistant PDX, ssDNA gaps were suppressed either by continuous replication (Fig. 3F), or by restored fork slowing (Supplementary Fig. S2I), indicating that loss of ssDNA gaps had occurred in BRCA patient tumors de novo and accurately predicted acquired cisplatin resistance.

These findings present the idea that ssDNA gaps underlie chemosensitivity, and that loss of FP or HR does not. If so, when gaps are present, it should be possible to uncouple FP and HR from therapy response. To test this prediction, we first restored FP by inhibition of MRE11 or depletion of SMARCAL1 in BRCA2-deficient PEO1...
ssDNA replication gaps, and not FP or HR, determine patient response to chemotherapy. A and B, Schematic and quantification of CldU track length in PEO1 cells shows that depleted SMARCAL1 or inhibited MRE11 does not increase replication in the presence of stress (A) and does not protect from S1 nuclease, unlike CHD4 depletion (B). C, Neither SMARCAL1 nor MRE11 mRNA levels predict response of patients with ovarian cancer with germline BRCA2 deficiency in TCGA dataset (P > 0.8 and P > 0.5, respectively). In contrast, CHD4 mRNA levels do predict response in these patients (P = 0.03). Shaded area represents the 95% confidence interval. D, Western blot analysis confirms RAD51 T131P cells remain hypersensitive to cisplatin even when RADX is depleted (bottom). E, Schematic and quantification of CldU track length (white) shows that fibroblasts from a Fanconi anemia–like patient with a mutant allele of RAD51 (T131P; HR-proficient cells and cisplatin hypersensitive) fail to arrest replication in the presence of stress even when RADX is depleted, and these regions are degraded by S1 nuclease (light gray). WT Fanconi anemia cells were corrected by CRISPR to delete the dominant-negative T131P RAD51 allele. Each dot represents one fiber. Experiments were performed in biological triplicate with at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann–Whitney test; ***, P < 0.001. Mean and 95% confidence intervals are shown. NS, not significant.

Cells (6, 27, 28). Nevertheless, even though FP was restored, cisplatin resistance was not conferred and, as predicted by our model, ssDNA gaps remained as demonstrated by S1 nuclease degradation (Fig. 4A and B; Supplementary Fig. S3A–S3F). Moreover, neither SMARCAL1, nor MRE11 or other reported FP factors, were predictive of BRCA2 deficiency in TCGA dataset (Fig. 4C; Supplementary Fig. S3G), suggesting that ssDNA gaps, but not FP, determine therapy response.

In addition, we tested whether ssDNA gaps were distinct from fork degradation. Specifically, we analyzed gaps in VC-8 cells that express either WT BRCA2 or a BRCA2-mutant version (S3291A), which are deficient for FP yet resistant to chemotherapy (6). We did not detect ssDNA gaps in the S3291A cells, thereby confirming that fork degradation can occur without the accumulation of ssDNA gaps (Supplementary Fig. S3H and S3I) and that BRCA function in ssDNA gap suppression is distinct from FP.

We also considered the possibility that our ssDNA gap model could explain a discrepancy in the literature, in which cells from a patient with Fanconi anemia were sensitive to cisplatin and other genotoxic agents as expected, but were surprisingly found to be proficient in HR (12). Indeed, we found wide-spread ssDNA gap induction in the S1 assay in these Fanconi anemia patient cells; specifically, we observed S1 sensitivity in the Fanconi anemia patient fibroblasts that maintain a RAD51-mutant (T131P) allele as compared with isogenic RAD51 WT fibroblasts (CRISPR corrected after isolation from the patient; Supplementary Fig. S4A). Importantly, the T131P cells are deficient for FP, but FP can be restored by depletion of the RAD51-negative regulator RADX in T131P (29). However, despite both proficient HR and FP, even the T131P cells with depleted RADX remained cisplatin hypersensitive, and we observed ssDNA gaps remained by S1 nuclease analysis of CldU track length in PEO1 cells with an STRA1 high (**, P < 0.01).
DNA DSBs are not detected when apoptosis is inhibited. A, Overview of model. Therapy induces ssDNA gaps that trigger programmed cell death, and the nucleolytic machinery creates DNA DSBs. B, Flow cytometry with PI and Annexin V shows that apoptosis is eliminated by 50 μmol/L Z-VAD-FMK in BRCA2-deficient PEO1 cells treated with 1 μmol/L camptothecin (CPT) for 48 hours (left). Flow cytometry detects apoptosis in BRCA2-deficient PEO1 cells treated with 0.5 μmol/L cisplatin (CDDP) for 24 hours (see Supplementary Fig. S5A for matched untreated control) or 2.5 μmol/L cisplatin for 72 hours (see Supplementary Fig. S5F for matched untreated control; right). C, Overview of isolation procedure that maintains high molecular weight (megabase scale) gDNA for PFCE. C. D, PFCE of PEO1 gDNA reveals 50 μmol/L Z-VAD-FMK eliminates all detectable DNA DSBs for both 1 μmol/L camptothecin 48-hour treatment and 2.5 μmol/L cisplatin 24-hour treatment. E, Model of BRCAness and chemoresistance. During stress, BRCA-deficient cells fail to effectively restrain replication, leading to ssDNA gaps that determine chemosensitivity: BRCAness. These cells acquire chemoresistance by eliminating the ssDNA gaps, either by gap filling or by restoring fork slowing.

Discussion

Although ssDNA gaps are a common indicator of genotoxicity and result from loss of the BRCA-RAD51 pathway, they have been overlooked as the determinant of toxicity in favor of defects in HR and FP (6, 12, 28, 30, 32–38). However, there are several genetic systems in which the DSB model does not appear to accurately predict therapy response, and therefore, presents an opportunity to revise the underlying framework. Indeed, in light of our findings in different genetic backgrounds, including both BRCA1- and BRCA2-deficient cancers (Supplementary Fig. S6), we propose that replication gaps underlie the mechanism of action of genotoxic chemotherapies, and it is the failure
to suppress gaps, and not defects in HR or FP, that underlies the hypersensitivity of BRCA-deficient cancer to treatment. In support of this concept, when gaps persist, we demonstrate that HR- or FP-proficient cells can, nevertheless, be hypersensitive to genotoxins. Moreover, when gaps are suppressed by loss of CHD4, FEN1, EZH2, or ZFHX3, BRCA-mutant cells are resistant to genotoxins without restoring HR (21, 23, 24). Similarly, without HR, FP is proposed to mediate cisplatin resistance (18), however, we found that restored FP in BRCA2-deficient cells achieved by MRE11 inhibition or SMARCAL1 depletion does not enhance cisplatin resistance. We also found that other FP factors failed to accurately predict therapy response in TCGA.

In addition, the emerging evidence indicates that gaps are distinct lesions arising from replication defects, are suppressed by the BRCA–RAD51 pathway, and are located behind the fork at sites distinct from stalled or broken replication forks (28, 37, 39–42). When replication fails to be fully restrained because of loss of the BRCA–RAD51 pathway, we predict that replication gaps derive from replication dysfunction, rather than overactive nuclease activity (28, 43). While nuclease could extend nicks or gaps, we found S1 nuclease digestion was unaffected by MRE11 inhibition or depletion of the fork remodeler SMARCAL1, which generates the replication fork structure degraded by MRE11 in BRCA2-deficient cells (27, 28, 44). Thus, gaps likely form in newly replicated DNA prior to remodeling or degradation of replication forks. We found that gaps are suppressed by at least two mechanisms: gap filling when replication proceeds during exposure to genotoxins, or by restored fork restraint as achieved by BRCA rever-

Importantly, our findings do not exclude the possibility that ssDNA gaps are in fact converted, albeit at undetectable levels, into DSBs that drive hypersensitivity. However, it is unclear how low levels of DSBs would lead to hypersensitivity, especially considering that BRCA-deficient cells employ backup DSB repair mechanisms, such as end joining pathways. Although the resulting genomic instability intro-
doed by end joining pathways could conceivably trigger hypersen-
sitivity in BRCA cancer, this model does not appear to fit the observed data. Specifically, the FP-deficient VC-8 cells with the BRCA2 S3291A mutant display substantial genomic instability, yet simultaneously display cisplatin resistance that is indistinguishable from the WT BRCA2 control (Supplementary Fig. S3H and S3l; ref. 6). Similarly, if ssDNA gaps are ultimately converted into DSBs, then cells proficient for HR would be expected to successfully repair these DSBs and, therefore, be resistant; however, the Fanconi anemia RAD51 T131P cells are HR proficient, yet are, nevertheless, hyper-
sensitive to chemotherapy (12) even when FP is restored (Fig. 4D and E; Supplementary Fig. S4). Indeed, these hypersensitive T131P cells also conflict more generally with models where DSBs are proposed to be the sensitizing lesion. Even if the DSBs are assumed to be generated at levels that are undetectable by PFCE/PFGE (pulsed field gel electrophoresis), why would DSBs cause hyper-
sensitivity in cells that efficiently repair DSBs with HR? In addition, hypersensitivity with proficient HR has also been observed in other genetic systems (45), suggesting this is not an aberrant observation, and further reduces confidence in DSB models of BRCANess.

As we report here and as shown previously (46, 47) geno-
toxin-induced DSBs appear to be created by the programmed cell death process, rather than by the genotoxins themselves. Indeed, the observed DSBs from cisplatin and other genotoxic agents result in initial DNA fragments approximately 100–500 kb in size (48), which match the early-DNA fragments generated by the ordered nucleolytic degradation process carried out by the programmed cell death machin-
ery (49). Accordingly, we also considered that programmed cell death could be the source of the DSBs that cause hypersensitivity; however, we also found this model did not appear to agree with experiment for reasons identical to those described above. In particular, cell death–
duced DSBs would not be expected to confer hypersensitivity in the HR-proficient T131P cells because the DSBs would be effectively resolved by HR repair.

Similarly, we also considered that BRCA-deficient cells could instead be uniquely “primed” for programmed cell death, leading to increased cell death nuclease activity that creates higher levels of DSBs to overwhelm even intact HR machinery. However, this model is inconsistent with reports that disruption of programmed cell death nuclease eliminates observable DSBs, but does not eliminate programmed cell death or hypersensitivity (50). This observation also indicates that ssDNA gaps can likely induce cell death by a variety of different mechanisms within the programmed cell death repertoire. Therefore, we propose DSBs are generated either as an unrelated byproduct or as a minority lesion that does not substantially contribute to hypersensitivity, whereas ssDNA gap–induced cell killing is the basis for the toxicity of genotoxic agents and BRCANess.

Finally, we also propose that it will be critical to design experiments to further test both models. Specifically, it will be important to determine whether there are latent and unappreciated DSB repair defects in HR-proficient cells that are hypersensitive to genotoxins. Likewise, it will be important to determine whether persistent ssDNA gaps that occur during active replication under genotoxins can be identified in resistant cells, or if such gaps are found to be absent in hypersensitive cells. Furthermore, it will be important to assess whether the cellular introduction of ssDNA or DSB substrates differentially induce programmed cell death as described previously (51, 52); exploring this concept further by gene editing techniques will overcome the limitations of cell transfection and help elucidate the link between ssDNA gaps, DSBs, and genomic instability. It will also be critical to identify gap filling mechanisms that can be targeted to restore hypersensitivity; one possible target is transle-
sion synthesis (TLS). Indeed, CHD4 depletion elevates TLS that suppresses replication gaps (21, 39, 53). Not surprisingly, TLS confers chemotherapy resistance, is a cancer adaptation, and is actively being targeted for cancer therapy (53, 54). Moreover, we found that replication gaps due to BRCA deficiency are the basis for synthetic lethality to PARP inhibitors (55). Understanding how gap suppression functions align with other BRCA roles in genome preservation, cell viability, and tumor suppression will also be critical future questions.

In summary, this study supports a new model that predicts cancer cells with the BRCANess phenotype will be effectively treated by therapies that exacerbate replication gaps. Similarly, preventing gap suppression pathways will improve the effectiveness of therapy, as well potentially resesthemoront necrosis drugs to therapy. On the basis of our findings, we also propose that ssDNA gaps could serve as biomarkers for BRCANess, and that gap induction is fundamental to the mechanism of action of chemotherapies that deregulate replication.

Authors’ Disclosures

N.J. Panzarino reports grants from NIH NCI during the conduct of the study and reports having a patent for prediction of cancer therapy efficacy pending. K. Cong reports grants from NIH NCI during the conduct of the study and reports having a patent for prediction of cancer therapy efficacy pending. S.U. Nayak reports grants
from NIH NCI during the conduct of the study and reports having a patent for prediction of cancer therapy efficacy pending. B. Deng reports grants from NIH during the conduct of the study and outside the submitted work. S.B. Cantor reports grants from NIH (RO1 grant) and other funding from Lipp Family Foundation and Vitone Family during the conduct of the study. No disclosures were reported by the other authors.

Authors’ Contributions
N.J. Panzarino: Conceptualization, data curation, software, formal analysis, validation, investigation, methodology, writing-original draft, writing-review and editing. J.I. Krais: Data curation, methodology. K. Cong: Data curation, validation. M. Peng: Data curation, methodology. M. Mosqueda: Data curation. S.U. Nayak: Data curation, formal analysis, investigation. S.M. Bond: Data curation. J.A. Calvo: Data curation. M.B. Doshi: Data curation. M. Berez: Data curation. J. Ou: Software. B. Deng: Data curation. L.J. Zhu: Data curation, software. N. Johnson: Data curation, validation, methodology. S.B. Cantor: Conceptualization, resources, formal analysis, supervision, funding acquisition, investigation, methodology, writing-original draft, project administration, writing-review and editing.

References

Acknowledgments
We thank the members of the Cantor laboratory for helpful discussions. We thank Dr. Agata Smogorzewska for providing the Fanconi anemia patient cells, Toshi Taniguchi for the PEO1 and C4-2 cells, Maria Jasin for the VC-8 cells, and Lee Zhou for the HCC1937 cells. This work was supported by R01 grants CA247232, CA225018, and CA254037 (to S.B. Cantor) and R01 CA214799 and OCI02122 (to N. Johnson), as well as charitable contributions from Mr. and Mrs. Edward T. Vitone, Jr. and the Lipp Family Foundation. The Vermont Genetics Network Proteomics Faculty was supported through NIH grant P20GM103449 from the INBRE Program of the National Institute of General Medical Science. We thank Drs. Igor Astuturov and Vladimir Khazak for establishing and sharing PXN0204.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 13, 2020, revised September 2, 2020, accepted November 9, 2020; published first November 12, 2020.

Cancer Res; 81(5) March 1, 2021
Gaps Underlie BRCA Deficiency and Therapy Response

Replication Gaps Underlie BRCA Deficiency and Therapy Response

Nicholas J. Panzarino, John J. Krais, Ke Cong, et al.

Updated version

Access the most recent version of this article at:

doi:10.1158/0008-5472.CAN-20-1602

Supplementary Material

Access the most recent supplemental material at:

http://cancerres.aacrjournals.org/content/suppl/2020/11/12/0008-5472.CAN-20-1602.DC1

Cited articles

This article cites 54 articles, 16 of which you can access for free at:

http://cancerres.aacrjournals.org/content/81/5/1388.full#ref-list-1

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link

http://cancerres.aacrjournals.org/content/81/5/1388.

Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.