Beta-Glucuronidase Activity in Human Female Genital Cancer

L. D. Odell, M.D. and J. C. Burt, M.D.

(From the Department of Obstetrics and Gynecology, University of Chicago, and The Chicago Lying-in Hospital, Chicago 37, Illinois)

In 1937 Marrian (1) described a reaction whereby estriol glucuronide was hydrolyzed during its passage through mouse intestine. This action was ascribed to a β-glucuronidase.1 In a series of experiments, Fishman (2) and others (3) associated the activity of this enzyme more closely with the metabolism of glucuronic acid. The glucuronidase activity of mouse liver was increased following the administration of borneal and menthol, which are conjugated in animals as glucuronides, while injections of estrogen increased the glucuronidase activity of mouse uteri. The concept of “metabolic conjugation” rather than detoxification was applied to β-glucuronidase activity in mouse uteri where it was suggested the conjugated estriol glucuronide was possibly used by the cells (4). Recently, Odell and Fishman (5) described cyclic changes of glucuronidase activity in normal human endometrium. These changes closely parallel the reported titres of blood and urinary estrogens during the menstrual cycle. In addition blood and urine glucuronidase activity were found increased during pregnancy (6, 7). Moreover, the fall in serum glucuronidase activity postpartum was delayed by the administration of estrogens, notably stilbestrol (8).

A close association with cellular activity led to the study of this enzyme in cancer tissue. Fishman (9, 10) noted greater activity of glucuronidase in breast carcinomas and involved lymph nodes, and in gastric, bowel, and metastatic carcinomas, than in normal uninvolved tissues. Moreover, an inhibitor substance (11) low in cancer tissue was detected. Preliminary studies on female genital cancer have been reported by Odell and Burt (12).

EXPERIMENTAL

The method used was that described by Fishman, Springer and Brunetti (13). Fresh tissues2 were weighed, homogenized with distilled water, centrifuged and the supernatant fluids assayed for β-glucuronidase activity. Findings are summarized in Tables 1, 2, 3, and 4. Except for the pregnant cervix, a consistent difference in glucuronidase activity occurred between histologically proven cases of squamous celled cervical carcinoma (which were high) and histologically non-malignant cervixes (which were low). Glucuronidase values for endometrial carcinoma, however, were within the range of non-malignant endometrium. Decidua had its greatest activity in early pregnancy; values over 1000 γ per gm. per hour of incubation being obtained from patients under 12 weeks pregnant. It is of interest that the activity in non-malignant and malignant endometrium and decidua are much greater than in any other genital tissue, and some of the highest obtained in the body. Four cases of primary squamous celled carcinoma of the vagina and two of the vulva were studied. In five of these β-glucuronidase activity was increased. A radical vulvectomy was performed on one patient with vulvar carcinoma. The glucuronidase activity of the vulvar lesion and a histologically involved lymph node were high and comparable.

As to the non-malignant cervix histological study revealed a variety of diagnoses. Among these, in addition to histologically normal cervix, were acute and chronic cervicitis with Nabothian cysts, cervical erosion, and leukoplakia. No correlation could be found between the types of benign lesion and the activity of β-glucuronidase in the tissue. Malignant cervical tissues, however, were greater in the proliferative (exophytic) growths than in ulcerative (endophytic) types. As to the non-malignant endometrium histological study revealed all degrees of normal, hypoplastic and hyperplastic growth. Glucuronidase activity was greatest in endometrial hyperplasia. All endometrial tissues were obtained incident to hysterectomy or at the time of diagnostic curettage. The range of β-glucuronidase activity in these specimens was greater (upward) than that reported for endometrium from women with normal menstrual cycles (5).

Serial determinations showed a progressive increase in glucuronidase activity from the portio of the cervix to the endometrium, but little difference between various sites of endometrium (Table 3). Irradiation caused a decrease in tissue β-glucuronidase activity (Table 4). A cervix which was histologically involved with cancer was higher in activity than uninvolved portions As...
such, these data on tissues indicate a significant difference between the glucuronidase activity of non-malignant (non-pregnant) and malignant cervix, no difference between non-malignant and malignant endometrium, and marginal differences in vulva and vagina.

In the light of these findings, one would expect the vaginal fluid, which bathes the cervix and vagina, to become a rich source of this enzyme in the presence of untreated cervical cancer was associated in every case with a high activity (over 320 γ per ml. vaginal fluid per hour) of enzyme in the uncentrifuged vaginal fluid suspension. Following treatment this activity decreased as evidenced by the collective data2 (Fig. 1) and by the changes observed in individual cases (Table 4). Care must be employed to avoid contamination of the vaginal fluid with lubricating jelly and fresh blood. Likewise, douches previous to examination are discouraged. If added in vitro venous blood will inhibit the activity of glucuronidase in vaginal fluid. This inhibition, however, is not always observed when the bleeding originates from the corpus, possibly because of the high activity of glucuronidase in malignant and benign endometrium. Of the two methods, tissue versus vaginal fluid assay, the latter (vaginal fluid) is easier and more practical for large surveys.

Table 1

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Cases</th>
<th>Tissue Activity</th>
<th>Vaginal Fluid Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous cell carcinoma of cervix</td>
<td>18</td>
<td>4200</td>
<td>1080</td>
</tr>
<tr>
<td>Adenocarcinoma of fundus</td>
<td>8</td>
<td>1100</td>
<td>380</td>
</tr>
<tr>
<td>Squamous carcinoma of vagina</td>
<td>4</td>
<td>1440</td>
<td>891</td>
</tr>
<tr>
<td>Squamous carcinoma of vulva</td>
<td>2</td>
<td>925</td>
<td>581</td>
</tr>
</tbody>
</table>

Figures express γ of phenolphthalein liberated per gm. of tissue or ml. of vaginal fluid per hour of incubation. Only untreated cases are included.

1 Arithmetic mean.

Vaginal fluid was available for assay on 14 cervical and 5 fundal carcinomas, and 1 vaginal carcinoma.

TABLE 2

Frequency Table of β-Glucuronidase Activity in Benign Tissues

<table>
<thead>
<tr>
<th>Cervix</th>
<th>Endometrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Pregnant</td>
<td>Pregnant</td>
</tr>
<tr>
<td>Non-Pregnant</td>
<td>Pregnant</td>
</tr>
<tr>
<td>Vulva</td>
<td>Ovary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification</th>
<th>Cervix</th>
<th>Endome-trium</th>
<th>Internal</th>
<th>Endome-trium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix os portion</td>
<td>409607</td>
<td>128</td>
<td>248</td>
<td>10100</td>
</tr>
<tr>
<td>Corpus luteum</td>
<td>81011</td>
<td>48</td>
<td>38</td>
<td>4760</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>434151</td>
<td>118</td>
<td>390</td>
<td>4150</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>377885</td>
<td>106</td>
<td>178</td>
<td>365</td>
</tr>
<tr>
<td>Fallopian tube</td>
<td>450707</td>
<td>55</td>
<td>55</td>
<td>993</td>
</tr>
<tr>
<td>Myometrium</td>
<td>460505</td>
<td>118</td>
<td>143</td>
<td>1820</td>
</tr>
</tbody>
</table>

DISCUSSION

It has been suggested that the activity of β-glucuronidase is related to cellular proliferation (14). It seems pertinent that its activity is higher in those normal genital organs (endometrium and corpus luteum) in which mitotic activity is usually present. In addition, the activity of β-glucuronidase has been closely associated with glucuronide formation (2, 3), notably with estrogen (4).

Since the range of activity of β-glucuronidase in malignant tissue is increased over the non-malignant in cervix but not in endometrium, the role of...
this enzyme in cancer tissue becomes a point of interest. If glucuronidase is primarily concerned with the conjugation of estrogen, is endometrial carcinoma different from non-malignant endometrium in its metabolic requirement for steroid?

In fact, the outstanding feature of an increased activity of β-glucuronidase in genital cancer, in non-malignant endometrium, in corpus luteum, and in pregnancy has been its close association with cellular growth.

TABLE 4

<table>
<thead>
<tr>
<th>Identification</th>
<th>Age</th>
<th>Group</th>
<th>Tissue</th>
<th>Vaginal fluid</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>400048</td>
<td>56</td>
<td>II</td>
<td>1308</td>
<td></td>
<td>1-20-49</td>
<td></td>
</tr>
<tr>
<td>400099</td>
<td>62</td>
<td>III</td>
<td>1357</td>
<td></td>
<td>1-11-49</td>
<td></td>
</tr>
<tr>
<td>402183*</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>2-5-49</td>
<td></td>
</tr>
</tbody>
</table>

The table includes irradiation treatment in mg. hours of radium and pertinent notes. Figures express g of phenolphthalein liberated per gm. of tissue or ml. of vaginal fluid per hour of incubation.

GROUP—League of Nations Classification; U—Uncentrifuged suspensions of vaginal fluid and water; C—The supernatant fluid after centrifugation.

* Adenocarcinoma of fundus with cervical extension.

Micro-Kjeldahl determinations were made on homogenized tissues for total protein. Some direct relationship was observed between the total protein of the homogenate and the activity of the enzyme. The interpretation of this observation would include the possibility that the activity of β-glucuronidase is related to the cellular structure of the tissue assayed.

SUMMARY

As to tissues, the activity of the enzyme β-glucuronidase is greater in malignant cervix than in non-malignant cervix. In adenocarcinoma of the uterus, however, glucuronidase activity does not differ from that found in endometrium from women with benign uterine bleeding. Increased activity of this enzyme is present in some pregnant cervixes.

As to vaginal fluid, assays on the uncentrifuged suspensions showed consistently high values in the presence of untreated cervical cancer. In the presence of clinically benign conditions, false positive tests occurred in 18 per cent of the material studied.

Following irradiation treatment for cervical cancer, the activity of β-glucuronidase in the tissue and in the vaginal fluid declined.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Wm. J. Dieckmann for encouraging this project. The authors also wish to thank Drs. Herbert E. Schmitz and John J. Conley of the Mercy Hospital, Chicago, Illinois for additional material from cancer patients. The senior author (L.D.O.) wishes to thank Dr. Wm. H. Fishman and Miss Rosemary Brunetti for instruction in their method of β-glucuronidase assay.
REFERENCES

15. BURT, J. C., and ODELL, L. D. In press.
Beta-Glucuronidase Activity in Human Female Genital Cancer

L. D. Odell and J. C. Burt

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/9/6/362

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/9/6/362.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.