MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells

Pinchas Tsukerman¹, Noam Stern-Ginossar¹, Chamutal Gur¹, Ariella Glasner¹, Daphna Nachmani¹, Yoav Bauman¹, Rachel Yamin¹, Alon Vitenshtein¹, Noah Stanietsky¹, Tomer Bar-Mag¹, Dikla Lankry¹ and Ofer Mandelboim¹

¹Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem 91120, Israel. Correspondence should be addressed to Ofer Mandelboim (oferm@ekmd.huji.ac.il).

Running title: Targeting of MICB by miR-10b

Precis: Findings show how upregulation of an important metastasis-promoting microRNA in cancer cells also permits them to evade natural killer cells, thereby linking metastatic capability and immune escape.

Financial support: This study was supported by grants from the Israeli Science Foundation, The ICRF, by the Rosetrees trust, by the Association for International Cancer Research (AICR), and by the I-CORE Program of the Planning and Budgeting Committee, The Israel Science Foundation (grant number 41/11). O.M is a Crown professor of Molecular Immunology.

The authors declares no conflict of interest
Natural killer cells (NK) are a component of innate immunity well known for their potent ability to kill virus-infected or neoplastically transformed cells following stimulation of the NK cell receptor NKG2D. One of the various ligands of NKG2D is MICB, a stress-induced ligand that has been found to be upregulated on the surface of tumor cells. However, there is little knowledge about how this upregulation may occur or how it may be selected against in tumors as a mechanism of immune escape. Here we report that the metastasis-associated microRNA (metastamir) miR-10B directly binds to the 3' UTR of MICB and downregulates its expression. Notably, antagonizing miR-10b action enhanced NKG2D-mediated killing of tumor cells in vitro and enhanced clearance of tumors in vivo. Conversely, agonizing miR-10B downregulated MICB and impaired elimination of tumor cells. Together, our results define MICB is a novel immune target of miR-10B, implying a direct link between metastasis capability and immune escape from NK cells.
Introduction

MiRNAs are short noncoding RNA molecules that usually repress gene expression, by binding to their target mRNAs (mainly in the 3’ untranslated region (UTR)) and either repress translation, or cause mRNA degradation (1, 2). The miRNAs effect is moderate; nevertheless, these molecules are important gene regulators (3-5) and it is estimated that the activity of more than 50% of all cellular genes is controlled by miRNAs (5). MiRNAs can be either beneficial or detrimental to the developing tumors as they could serve either as tumor suppressors or as tumor initiators (6-10). MiRNAs are also involved in the metastatic process and the capacity of several miRNAs to initiate and to promote metastasis formation set the term “metastamir” (11-13). The most prominent metastamirs are: miR-10b, miR-21, miR-210, miR-373 and miR-520d (11-14). Among these miRs, miR-10b is probably the most famous one as it promotes both invasion and metastasis in various types of cancers by targeting multiple genes (15-18). Surprisingly, miR-10b is also expressed in majority of normal tissues (19). Furthermore, it is significantly downregulated in the initial process of breast cancer initiation and is later upregulated in tumor metastases (20), (11). These observations suggests that miR-10b function also under normal conditions, however its role under these conditions is poorly understood.

The developing tumors are sensed by both innate and adaptive immune cells (21). Natural Killer (NK) cells which are part of the innate immune system are known for their capacity to kill various tumor cells (22, 23). The NK cell activity is controlled by a balance of signals derived from inhibitory and activating receptors (24, 25). One of the most powerful activating receptors expressed by NK cells (and also by subsets of T cells) is NKG2D (26, 27). This receptor recognizes stress-induced ligands which appear on the cell surface following various stresses, such as viral infection, and cell transformation (28). The human stress-induced ligands include the major histocompatibility complex class I polypeptide–related sequences A and B (MICA and
MICB, respectively) and the UL16-binding proteins (ULBP) 1-6 (28-30). Numerous mechanisms were developed by tumors and by viruses to escape NKG2D mediated recognition, emphasizing the importance of this receptor (29, 31-35). For example, several distinct cellular and viral miRNAs were shown to target MICB, MICA and ULBP3 to evade the NKG2D-mediated elimination (31-35).

The identification of miRNA targets is a difficult task. This difficulty arises because miRNAs are not fully matched with their target mRNAs and because the exact mechanisms controlling miRNA-mRNA interactions are not fully understood. Most algorithms that were so far developed to predict miRNA targets are very inaccurate with a false positive rate of about 65% (36).

Because several of the cellular MICB/A-targeting miRNAs are over expressed in tumors (35) and since NKG2D plays an important role in tumor cell recognition, we wondered whether tumors might use metastamirs not only to promote the generation of the metastatic phenotype but also to facilitate evasion from immune detection by targeting the stress-induced ligands of NKG2D. Here we show that MICB is targeted by the metastamir miR-10b and that such targeting leads to tumor escape from NK cell attack.
Materials and Methods:

Lentiviral constructs, production, and transduction

Artificial RNA hairpins that function as pre-miRNA hairpins were generated by using the pTER vector as previously described (37). Sponge constructs were generated by annealing the oligonucleotides, phosphorylating them using T4 polynucleotide kinase, and inserting them into the pcDNA3 vector (Invitrogen). The sponges were excised and cloned into the lentiviral vector SIN18-pRLL-hEFIap EGFP-WRPE (38), downstream to the GFP cassette. Each sponge consists of six adjacent binding sites for the relevant viral miRNA, separated by a 4 nucleotide (AGAG) spacer (Hannon 2008). The sequences of the sponges binding site: sponge anti hsa-miR-10b: (5' to 3') CACAAATTCGGAAGACAGGGTA; Sponge anti miR-BART 1-5p (control): CACAGCAGTCAGAACACTAAGA. The MICB CDS was inserted into the SIN18-pRLL-hEFIap EGFP-WRPE instead of the GFP as previously described (35). Lentiviral vectors were produced as previously described (35).

Cytotoxicity assays and NK cell preparation

The cytotoxic activity of NK cells against various targets was assessed in 5 hr 35S methionine release assays as described (39). The final concentration of the blocking antibodies was 2.5 mg/ml. NK cells were isolated from peripheral blood using the human NK cell isolation kit and the autoMACS instrument (Miltenyi Biotec) according to the manufacturer’s instructions.

Cell lines and Antibodies

The following cell lines were used: HeLa (ATTC number CCL-2), PC-3 (ATTC number CRL-1435), DU 145 (ATTC number HTB-81), HEK 293T (ATTC number CRL112-68), RKO (ATTC number CRL-2577), MDA-MB-231 (ATTC number HTB-26), MCF7 (ATTC number HTB-22)
All cell lines in this work were obtained from and validated by the American Type Culture Collection (ATCC) and maintained as per instructions. The anti-MICA, anti-MICB (MAB1599) (no cross-reaction with any of the stress ligands), anti-ULBP1-3, and anti-NKG2D antibodies were all purchased from R&D Systems (Minneapolis). The anti-CD99 (12E7) was used as an isotype control. The anti-NKG2D hybridoma C7 used for the in vivo NKG2D blocking was kindly provided by Prof. M.W. Yokoyama and Prof. S. Jonjic. The anti NK1.1 (PK136) was used for NK cells depletion.

Real-time PCR

Total RNA was isolated from various cell lines by using the Tri-Reagent® (Sigma) and treated with RNase-free DNase-Turbo (Ambion). The RNA extraction and cDNA preparation were done as previously described (34). MiR-16 and U6 snRNA were used as the endogenous reference genes for PCR quantification. The reverse primer was a 3′ adapter primer (3′RACE outer primer in the First Choice RLM-RACE kit), and the forward primer was designed based on the entire miRNA sequence. For hsa-miR-10b: 5′- TACCCTGTAGAACGAACTTTGTG 3′. The relative expression was calculated by qbase algorithm when lowest expression was set to 1 in the miRNAs. The MICB mRNA levels were quantified using MICB specific Taq-men gene expression kit by Ambion, according to the manufacturer’s instructions. HPRT was used as a control gene.

DNA constructs and luciferase assay

For the firefly luciferase vector we used the pGL3 control vector (Promega). The 3′UTR of MICB was generated as described (35) Xba I site immediately downstream to a stop codon. The inserts and their proper orientation were confirmed by sequencing. The mutation in has-miR-10b was
generated using following primers: FW 5’ TTCAGTCCAATACACCGTTGTGGG REV 5’ CCCACAACGGGTGTATTGGACTGAA, the luciferase assay was performed as described (32)

Lung clearance assay

Male C57B/6 mice (9-10 weeks old) were divided into three groups and were injected IP with anti mouse NKG2D mAb (C7) at a concentration of 300 μg per mouse, or with NK1.1 (PK136), 150 μg per mouse or PBS. 24 hours later, HeLa cells (cells which are not efficiently killed by mouse NK cells (40) thus serving as internal control) were labeled with the fluorescent dye Vybrant DiD (Molecular Probes) and the various PC-3 cells were labeled with the fluorescent dye CFSE (Molecular Probes). Cells were mixed at a density of 5*10^6 cells of each population at 1 ml of PBS, and 400 μl was injected into the tail vein. Lungs were collected 5 h later, single-cell suspensions were obtained with cell strainers and fluorescence was analyzed by FACS. The ratio of tested target cells to HeLa cells was calculated. The ratio of the control vector injected cells to HeLa was set as 100%.
Results

MiR-10b specifically down regulates MICB expression.

To investigate whether metasamirs are involved in immune regulation by targeting the stress-induced ligands of NKG2D, we used the TargetScan algorithm (41) and searched the 3’ UTRs of the stress-induced ligands of NKG2D for potential binding sites of prominent metastasis-promoting miRNAs, miR-10b, miR-21 and miR-210. Potential binding sites were predicted in the 3’ UTRs of MICB, ULBP1 and ULBP2 (Supplementary Fig. 1) with regard only to miR-10b, thus we continued our analysis with this miRNA.

MiR-10b and a control miRNA were cloned into lentiviral vectors that also contain a GFP cassette and the two miRNAs were transduced into RKO cells (the transduction efficiencies of all cell lines used in this paper are shown in Supplementary Fig. 2). As can be seen in figure 1A and quantified in figure 1B, expression of miR-10b, resulted in about 50% downregulation of MICB expression compared with cells transduced with a control miRNA.

It has previously been demonstrated that the expression of miR-10b differs substantially between the two breast cancer lines, MDA-MB-231 and MCF7 (11). After confirming these observations (Fig. 1C, the expression of miR-10b in MCF7 cells was set up as 1) we have tested the surface expression levels of MICB in these two cell lines and observed that, in agreement with the above results, MICB levels were inversely correlated with the expression of miR-10b (Fig. 1D). We next over expressed miR-10b in MCF7 cells (Supplementary Fig. 2 and Fig. 1E) and observed that this over expression significantly reduced MICB expression (Fig. 1F). Although the TargetScan algorithm predicted that ULBP1 and ULBP2 can potentially be targeted by miR-10b (Supplementary Fig. 1), little, or no changes in the levels of these ligands or other NKG2D ligands was detected in the presence of miR-10b (Fig. 1G, figure show only the stress-induced ligands that
are expressed by this cell line). Therefore, we concluded that miR-10b specifically controls MICB expression.

MiR-10b directly binds to the 3' UTR of MICB

To test whether miR-10b targets MICB directly we have generated two firefly luciferase constructs; one containing the wild-type 3'UTR of MICB and another one containing the 3'UTR of MICB, in which the miR-10b site (predicted by the TargetScan algorithm (Fig. 2A)) was mutated. These constructs were transiently transfected into RKO cells that were also transduced with miR-10b, or with a control miRNA. As can be seen in figure 2B, a moderate, yet significant decrease in luciferase activity was observed in the presence of miR-10b, while the mutations in the 3'UTR of MICB abolished this effect, indicating that miR-10b indeed directly targets MICB at the predicted binding site.

To elucidate the mechanism accounting for the miR-10b-mediated downregulation of MICB we used qRT-PCR to evaluate the mRNA levels of MICB in RKO cells stably expressing miR-10b or a control miRNA. In agreement with our previous reports regarding the miRNA mode of regulation of the stress-induced ligands (34, 35) we observed no significant differences (Fig. 2C), suggesting that the miR-10b-mediated MICB downregulation probably occurs by translational repression.

Subtle changes in MICB expression affects NKG2D-mediated killing

The miRNA activity effect is generally moderate (3) and indeed the miR-10b-mediated downregulation of MICB was moderate as well, ranging between 20-50% depending on the cell line examined (see Fig. 1 and figures below). We were therefore interested to test whether moderate differences in MICB expression will affect the NKG2D-mediated killing by NK cells. For this purpose we transduced 293T cells (that do not express MICB on their cell surface) with lenti viruses expressing MICB and obtained 3 clones expressing various levels of MICB on their
surface (Fig. 3A). The various MICB expressing clones were then used in NK cytotoxicity assays. As can be seen in figure 3B and C subtle changes of around 20% of MICB expression were sufficient to cause a significant reduction in the NK-mediated killing of 293T cells (the raw killing data are presented in Supplementary Fig. 3). The MICB-dependent reduction of killing was due to reduced NKG2D recognition, because the killing of all clones was reduced to the levels of the parental 293T upon NKG2D blocking (Supplementary Fig. 3).

The downregulation of MICB by miR-10b results in reduced NKG2D mediated killing.

We next aimed to demonstrate that the miR-10b mediated downregulation of MICB is functional and specific. We therefore initially tested whether the expression of miR-10b in a cell line deficient for MICB expression such as 293T (Supplementary Fig. 4) will alter either the expression of the NKG2D ligands or will affect the killing of these cells. As can be seen, over expression of miR-10b did not induce the expression of MICB and it did not influence the expression of other NKG2D ligands such as MICA, ULBP2 and ULBP3 (Supplementary Fig. 4A.). Furthermore, no difference in the killing of 293T cells was observed between miR-10b transduced and control miR transduced cells (Supplementary Fig. 4B).

Next, we tested the functional outcome of the miR-10b targeting of MICB by using various cell lines of diverse origins that are positive for MICB expression such as: DU 145 cells (Fig. 4A), MCF7 (Fig. 4B) and RKO (Fig. 4C). The cells were transduced with miR-10b or with a control miR (the transduction efficiency is shown in Supplementary Fig. 2) and as can be seen in figure 4A-C-1, quantified in figure 4A-C-2, a reduction in MICB expression was noticed in all cell lines following the miR-10b over expression. Furthermore, the miR-10b-mediated reduction was specific as the expression of other NKG2D ligands was not altered following the miR-10b transduction (Fig 1G and Supplementary Fig 5, figure shows only the NKG2D ligands that are expressed by these cells).
Next we tested whether the miR-10b-mediated reduction of MICB expression is functional. For that we used all cell lines transduced with miR-10b in NK cytotoxicity assays. As can be seen in figure 4A-C-3, the miR-10b-mediated reduction of MICB expression is functional as it leads to a moderate reduction in killing of all 3 target cells tested at various effector to target ratios. Furthermore, the miR-10b-mediated reduction of killing was due to reduced NKG2D recognition as blocking of NKG2D resulted in equivalent killing of all targets (Fig. 4C-3). Thus, we concluded that targeting of MICB by miR-10b leads to a specific reduction of MICB expression and consequently to reduced killing by NK cells.

MiR-10b endogenously controls MICB expression.

We next wanted to demonstrate that MICB expression is endogenously controlled by miR-10b. For this purpose we used the miRNA sponge technique that enables us to antagonize the activity of a certain miRNA (42). HeLa cells and PC-3 cells that express moderate levels of miR-10b and DU 145 cells that express high levels of miR-10b were transduced with either the anti-miR-10b sponge, or with a control sponge (the transduction efficiency is shown in Supplementary Fig. 2). As can be seen in figure 5A-C-1, quantified in 5A-C-2 the expression of the miR-10b-sponge leads to a moderate elevation of about 25% in MICB expression. The increased expression of MICB was specific and significant as the expression of other NKG2D ligands did not change (Supplementary Fig 6, the figure show only the staining of NKG2D ligands that are expressed by these cells). The sponge effect is moderate because the sponge does not completely prevent the MICB targeting by the relevant miRNA, but it rather titrates some of the microRNA effect through target site competition (42).

One of the major advantages of the sponge technique is that it also enabled us to monitor for the sponge activity. The sponge is located downstream to the GFP ORF and thus the sequestration of the relevant miRNA leads to reduced GFP intensity. Indeed, as can be seen in figure 5A-C-3 the
anti-miR-10b sponge indeed sequestered miR-10b as the GFP intensity of this sponge was significantly reduced in all lines tested as compared to control sponge.

Finally, we demonstrated that the miR-10b-mediated sponge elevation of MICB expression is functional, as killing of the miR-10b sponge transduced cells was enhanced in all lines tested (Fig. 5A-C-4). The increased effect was NKG2D dependent since blocking of NKG2D abolished the observed differences (Fig. 5C-4).

MiR-10b-mediated immune evasion in vivo

Our next aim was to demonstrate the significance of the miR-10b targeting of MICB *in vivo*. This is a difficult task because the human NKG2D ligands are different from that of the mouse and MICB is not expressed by mouse cells (43, 44). Furthermore, the 3’ UTRs of the mouse and human NKG2D ligands are different and no sites are predicted for miR-10b in the 3’UTRs of the mouse NKG2D ligands. Indeed, overexpression of miR-10b in the mouse B12 cells did not decrease the levels of mouse stress-induced ligands (data not shown). In addition, it is very difficult to examine the immune mediated effect of miR-10b in long term assays using human xenograft implanted in T cell deficient mice, as miR-10b is very well known for its tumorogenic and metastatic properties. Thus, it would be very difficult to interpret the results that relates to the immune activity of miR-10b using long term human xenograft assays.

On the other hand, testing the activity of NKG2D-related functions regarding human tumors is feasible in immunocompetent mice model since the murine NKG2D receptor recognizes the human ligands and vice versa (35). Thus, to evaluate the miR-10b-mediated immune effect *in vivo* we used a short term *in vivo* assay (illustrated in Fig. 6A). C57B/6 mice were injected either with PBS, with a blocking anti-NKG2D mAb (which does not lead to immune cell depletion (45)), or with anti NK1.1 antibody for the depletion of NK cells, at time point zero (Fig. 6A). Twenty four
hours later, the various mice were i.v. injected with either PC-3 cells expressing miR-10b (the specific downregulation of MICB is shown in Fig. 6B and Supplementary Fig. 7), PC-3 cells expressing a control vector, or PC-3 expressing an anti miR-10b sponge (the specific upregulation of MICB is shown in Fig. 6B and Supplementary Fig. 7). Since i.v. injections might vary between the different mice, it is essential to use an internal control. Therefore, in each injection we mixed the tested PC-3 cells which are labeled with one fluorescent dye together with HeLa cells (that are hardly killed by mouse NK cells (40)) and are labeled with a different fluorescent dye, and injected them i.v. into the various mice groups (Fig. 6A). The labeled cells reach the lungs of the injected mice within less than 1 minute ((40) and Supplementary Fig. 8A) and the *in vivo* killing of the various cells is performed in the lungs. The lungs of the injected mice are harvested five hours later (enabling us to examine the function of mainly innate immune cells, such as NK cells), cell suspensions from the lungs were obtained and analyzed by FACS.

Importantly, we observed that the miR-10b-mediated downregulation of MICB was significant in this *in vivo* setting because, as can be seen in figure 6C, left, significantly more PC-3 cells over expressing miR-10b were present in the lungs of the injected mice, as compared to PC-3 cells expressing a control miRNA (miR-10b down regulates MICB, therefore less cells are killed and more cells are present in the lungs). A reciprocal picture was observed when the miR-10b activity was antagonized by the miR-10b sponge, as this led to a significantly lower tumor cells survival in the lungs (the miR-10b sponge leads to increased MICB expression and therefore increased killing). The differences observed were due to NKG2D recognition as the *in vivo* blocking of NKG2D activity by anti-NKG2D mAb abolished the effects observed (Fig. 6C, middle).

Furthermore, NK cells are the main responders in this setting since the experiments were conducted for 5 hours only (enabling the activity of mainly innate immune cells) and because the depletion of NK cells by the anti NK1.1 mAb abolished completely the effects observed (Fig. 6C,
right). Examples of the raw data are presented in supplementary figure 8. Thus, the miR-10b mediated reduction of MICB protects tumor cells from immune recognition \textit{in vivo}.
Discussion

Tumors developed various mechanisms to escape immune cell mediated elimination (21). Prominent among these, is the reduction of MHC class I expression to avoid CTL attack (46). However, evading CTL attack in such a manner renders the tumor cells susceptible to NK cell mediated eradication, because NK cell killing is inhibited by MHC class I-binding inhibitory receptors (25, 44). To overcome the NK cell attack, tumors also developed mechanisms to inhibit the NK cell activity, which includes, for example, the upregulation of HLA-G to inhibit NK cytotoxicity (46), and the downregulation of killer ligands for NKG2D and NKp46 (35, 44, 47) to escape the killer receptor recognition.

In recent years it was realized that several miRNAs contribute significantly to tumor spread and metastasis, hence these miRNAs were named oncomirs or metastamirs. Here we identified a novel immune target for one of the most prominent metastamirs known to date, miR-10b. We show in vitro that miR-10b targets the 3' UTR of MICB and not other stress induced ligands and that this results in diminished NKG2D recognition and consequently reduced tumor cells killing by NK cells. We demonstrated that the miR-10b-mediated downregulation of MICB resulted in reduced NK cell elimination in vivo through reduced recognition of NKG2D. This was a challenging task as MICB is not expressed in mice, the murine stress ligands are not targeted by miR-10b and it is quite difficult to assess the immune function of miR-10b as this miRNA is very well known for its prominent role in promoting tumor progression and metastases.

We have previously identified other cellular miRNAs that target MICB [32, 35]. The various MICB targeting miRNA share several features: First, all cellular MICB targeting miRNA inhibits its expression probably through inhibition of translation. Second, cells expressing each of the MICB targeting miRNAs are killed less efficiently. Still however, out of the various MICB
targeting miRNAs miR-10b outstands as a unique miRNA. Its binding site is located in the middle of the 3’ UTR of MICB and not at the edges as all other MICB-targeting miRNAs [32, 35]. Furthermore, for all other MICB targeting cellular miRNAs, viral miRNAs were identified that binds MICB in sites overlapping with the cellular miRNA binding sites [32, 35]. In contrast, no viral miRNAs were identified that target MICB at sites overlapping with that of miR-10b. Recent work by the Weinberg group showed that antagonizing miR-10b activity \textit{in vivo} restores the levels of the transcription factor HOXD10, and reduces metastases formation (48), (49). Here we show that a competitive inhibitor (sponge) directed against miR-10b led to the upregulation of MICB on the surface of tumor cells, resulting in significant clearance of tumor cells \textit{in vivo}. Thus, we suggest that antagonizing miR-10b activity during tumor development might lead to reduction of metastases formation through dual mechanism; by enhancing the expression of the transcription factor HOXD10 and by boosting the NKG2D-mediated immune attack.

In conclusion, we demonstrate here that the metastamir miR-10b targets MICB to avoid the NKG2D mediated immune attack. NKG2D expressed not only by NK cells but also by by CD8+ T cells where it functions as co-stimulatory molecule (50). Thus, targeting of MICB by miR-10b is a novel and general immune evasion mechanism that linked directly metastases formation and immune evasion.
Acknowledgments

The authors thank Mazal Elnekave for assistance in the in vivo experiments.
References

Figures legends

Figure 1. MiR-10b specifically down regulates MICB expression.

(A) FACS analysis of MICB expression in RKO cells transduced with miR-10b (black open histogram), or with a control miR-BART 1-5p (gray open histogram). The filled gray histogram represents the staining of the secondary mAb only. (B) Quantification of the miR-10b effect. The MFI of MICB in the Ctrl miR transduced cells was set up to be 100% and the decrease in the miR-10b transduced cells was calculated accordingly.*P < 0.03 by two tailed student. (C) The relative expression levels of miR-10b in the cell lines indicated in the X axis. ***P < 0.0006 by two tailed student test. (D) Top histograms represent background staining. Bottom histograms show MICB expression in MDA-MB-231 (black open histogram), compared to the expression of MICB in MCF7 cells (grey filled histogram). (E) The relative levels of miR-10b expression in MCF7 cells following miR-10b transduction (the parental MCF7 levels of miR-10b set as one). ***P < 0.0003 by two tailed student test. (F) Top histograms show background staining, bottom histograms show MICB expression in MCF7 cells over expressing miR-10b (black open histogram) compared to the parental MCF7 cells (grey filled histogram). (G) FACS analysis of the expression of NKG2D ligands (other than MICB, only ligands that are expressed by MCF7 cells are shown), by MCF7 cells. Cells over expressing miR-10b are indicated by the black open histogram, whereas the expression of MICB in MCF7 cells over expressing the control miR-BART 1-5p is indicated by the grey filled histogram. The background staining of MCF7 cells presented in (G) is shown in (F) top panel. The entire figure shows one representative experiment out of three performed.

Figure 2. MiR-10b directly binds the 3'UTR of MICB
(A) Upper, schematic representation of the 3' UTR of MICB and the predicted binding of miR-10b (seed position bases 570-576 in the 3’UTR of MICB). Lower, alignment of hsa-miR-10b and the mutated 3’UTR of MICB. (B) Relative luciferase activity after transfection of the indicated reporter plasmids; MICB 3’UTR or the mutant MICB mut-10b 3’UTR (indicated in the X axis) into RKO cells expressing either hsa-miR-10b (black) or the control miR BART 1-5p (Ctrl miR, white). Firefly luciferase activity was normalized to Renilla luciferase activity and then normalized to the average activity of the control reporter. Shown are mean values ± SD. Statistically significant differences are indicated. **P< 0.02 by two-tailed student t test. Error bars (SD) are derived from triplicates. Figure shows one representative experiment out of three performed. (C) Levels of MICB mRNA were measured by qRT-PCR in RKO cells over expressing miR-10b (black) or control miR-BART-4 (white). Results are representative of three independent experiments.

Figure 3. Moderate changes in MICB levels affect NK cell cytotoxicity

(A) Relative MICB expression levels in the various 293T transfectants. The clone expressing the highest Median Fluorescence Intensity (MFI) of MICB expression was set up to be 100%. The differences are statistically significant,*P <0.05 by two tailed student test. (B-C) NK killing is significantly affected by MICB levels. Bulk NK cells were incubated with the various 293T clones shown in (A) for 5 hours at E:T (effector to target) ratio 20:1 (B) or 10:1 (C). The 293T cell clone expressing the highest MICB expression levels is indicated by grey filled rhombus. Intermediate expression is indicated by black rhombus, and the lowest MICB expression is indicated by empty rhombus.*P <0.05 by two tailed student test, **P <0.02 by two tailed student test. Y axis represents relative MICB expression levels (%), X axis normalized killing. The raw data, the NKG2D blocking experiments and the killing of the untransduced 293T cells are presented in Supplementary Fig. 3. Results are representative of three independent experiments.
Figure 4. The miR-10b mediated downregulation of MICB resulted in decreased NKG2D-mediated cytotoxicity

For clarity we designated each row with a letter code and each column with a number code. Each row represents experiments performed regarding the same cell line: DU145 (A), MCF7 (B), RKO (C). Column 1 shows FACS staining, column 2 quantification of the FACS staining and column 3 show NK killing assays. (A-C, column 1) FACS analysis of MICB expression in cells transduced with miR-10b (black open histogram), or with a control miR-BART 1-5p (gray open histogram). The filled gray histogram represents the staining of the secondary mAb only. (A-C, column 2) Quantification of the miR-10b effect. The MFI of MICB in the Ctrl miR transduced cells was set up to be 100% and the decrease in the miR-10b transduced cells was calculated accordingly.*P < 0.03 **P<0.01, by two tailed student test. (A-C, column 3), Cytotoxicity assays. Bulk NK cells were incubated with the indicated 35S methionine-labeled cells expressing either miR-10b, or control miR-BART 1-5p (Ctrl miR), for 5 hours at the E:T ratios indicated at the X axis. Shown are mean values ± SD. Statistically significant differences are indicated (*P <0.05,**P<0.02 by two-tailed t test). (C, column 3). In RKO cells, blocking experiments were also performed in which an anti NKG2D blocking mAb (dashed lines) was included in the assays. The entire figure shows one representative experiment out of 3 performed.

Figure 5. Endogenous control of MICB expression by miR-10b

For clarity we designated each row with a letter code and each column with a number code. Each row represents experiments performed regarding the same cell line: HeLa (A), PC-3 (B), DU145 (C). Column 1 shows FACS staining, column 2 quantification of the FACS staining, column 3 FACS of GFP intensity and column 4 show NK killing assays. (A-C, column 1) FACS analysis of MICB expression in cells transduced with sponge-10b (black open histogram), or with a control
Sponge BART 1-5p (gray open histogram). The filled gray histogram represents the staining of the secondary antibody only. (A-C, column 2) Quantification of the sponge-10b effect. The MFI of MICB in the Ctrl miR transduced cells was set up to be 1 expression, and the increase in the sponge-10b transduced cells was calculated accordingly.*P < 0.03, **P<0.01, by two tailed student test. (A-C, column 3) The effect on GFP levels following miR-10b sequestration. The GFP levels in the sponge miR-10b transduced cells is indicated by empty black histogram. The GFP levels in the control sponge transduced cells is indicated by empty grey histogram. (A-C, column 4), Bulk NK cells were incubated with the indicated 35S methionine-labeled cells expressing either sponge-10b, or control sponge-BART 1-5p (Sp-Ctrl), for 5 hours at the effectors : target (E:T) ratios indicated at the X axis. Shown are mean values ± SD. Statistically significant differences are indicated (*P <0.05,**P<0.02 by two-tailed t test). (C, column 4) In DU 145 cells blocking experiments were also performed in which an anti NKG2D blocking mAb (dashed lines) was included in the assay. The entire figure show one representative experiment out of 3 performed.

Figure 6. In vivo experiments

(A) Schematic representation of the in vivo experimental procedure. (1) C57B/6 mice were injected IP with anti mouse NKG2D mAb, with anti NK1.1 or with PBS (day 0). (2) 24h later (day 1), labeled HeLa cells (used as internal control) were mixed at 1:1 ratio with labeled PC-3 cells over expressing miR-10b, with PC-3 cells expressing sponge-10b or with PC-3 cells expressing a control vector and injected i.v. into the C57B/6 mice. (3) Five hours later, lungs were harvested and FACS analysis was preformed. (B) FACS analysis for the expression of MICB on PC-3 cells. (B, upper) miR-10b over expression is indicated by the black empty line, the control miR is indicated by grey empty line and the filled grey histogram represent the staining of the secondary antibody only. (B, lower) the sponge against miR-10b is indicated by
the black empty line, the control sponge is indicated by grey empty line and the filled grey
histogram represent the staining of the secondary antibody only. (C, Left) quantification of the
FACS analysis data. PC-3 to HeLa ratio of tumor cells that are present in the lungs was calculated
5 hours post injection, relative to the ratio of PC-3 to HeLa cells inoculated. The ratio of control
vector PC-3 to HeLa cells was set up to be 100%. PC-3 expressing sponge-10b and PC-3 cells
expressing miR-10b were calculated accordingly. **P <0.01, by two-tailed t test. (C, middle and
right) The various mixtures of PC-3 and HeLa cells that were used in C, left were injected into
mice that were pre-treated either with anti-NKG2D blocking mAb (C, middle) or with anti-NK1.1
mAb (C, left). Tumor cell survival was calculated as in C left. Figure show one representative
experiment out of two.
A
MICB wt 3'UTR:

<table>
<thead>
<tr>
<th>MICB 3'UTR</th>
<th>5'</th>
<th>UUUGUUGAGUCCAAUACAGGGUU 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-miR-10b</td>
<td>3'</td>
<td>UGUUUAAGCCAAGA-UGUCCAU 5'</td>
</tr>
</tbody>
</table>

MICB mutated 3'UTR:

<table>
<thead>
<tr>
<th>MICB 3'UTR</th>
<th>5'</th>
<th>UUUGUUGAGUCCAAUACACCGUU 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-miR-10b</td>
<td>3'</td>
<td>UGUUUAAGCCAAGA-UGUCCAU 5'</td>
</tr>
</tbody>
</table>

B

![Graph showing relative luciferase activity for different constructs and treatments](image)

C

![Graph showing relative expression for MICB](image)
Figure 3
Figure 5

A

HeLa

MICB

Counts

Relative MICB expression

Sp Ctrl
Sp 10b

*

30:1 15:1 7.5:1

% Killing

B

PC-3

MICB

Counts

Relative MICB expression

Sp Ctrl
Sp 10b

**

50:1 25:1 12.5:1

% Killing

C

DU 145

MICB

Counts

Relative expression

Sponge Ctrl
Sponge 10b

**

40:1 20:1 10:1

% Killing
Figure 6
MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells

Pinchas Tsukerman, Noam Stern-Ginossar, Chamutal Gur, et al.

Cancer Res Published OnlineFirst August 21, 2012.