Mammary tumor formation and metastasis evoked by a HER2 splice variant

Abdullah Alajati1,3,*#, Nina Sausgruber1,#, Nicola Aceto1,4, Stephan Duss1, Sophie Sarret1, Hans Voshol2, Debora Bonenfant2, and Mohamed Bentires-Alj1*

1Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
2Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
3Current address: Institute of Oncology Research (IOR), Bellinzona, Switzerland
4Current address: Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA

Authors who contributed equally to this work

Running title: Delta-HER2 causes breast tumors

Keywords: ERBB2, HER2, breast cancer, trastuzumab

Abbreviations: RTK: receptor tyrosine kinase

Disclosure of potential Conflicts of Interest

The authors declare no potential conflicts of interest

*Contact:
Mohamed Bentires-Alj
Friedrich Miescher Institute for Biomedical Research
Maulbeerstr. 66
4058 Basel, Switzerland
E-mail: bentires@fmi.ch
Or Abdullah Alajati
Institute of Oncology Research (IOR)
Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
E-mail: abdullah.alajati@irb.unisi.ch
SUMMARY

The HER2 gene is amplified and overexpressed in ~20% of invasive breast cancers where it is associated with metastasis and poor prognosis. Here we describe a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells that evokes aggressive breast cancer phenotypes. Delta-HER2 overexpression in mammary epithelial cells was sufficient to reduce apoptosis, increase proliferation and induce expression of mesenchymal markers, features that were associated with greater invasive potential in 3D cultures in vitro and more aggressive tumorigenicity and metastasis in vivo. In contrast, overexpression of wild-type HER2 was insufficient at evoking such effects. Unbiased protein-tyrosine phosphorylation profiling in Delta-HER2-expressing cells revealed increased phosphorylation of several signaling proteins not previously known to be controlled by the HER2 pathway. Further, microarray expression analysis revealed activation of genes known to be highly expressed in ER-negative, high-grade and metastatic primary breast tumors. Together, our results provide mechanistic insights into the activity of a highly pathogenic splice variant of HER2.
INTRODUCTION

Each year, breast cancer is diagnosed in over one million women worldwide. Although overall survival rates for breast cancer have improved significantly over the decades, more than 450,000 lives are still lost annually to this disease (1). Improved understanding of how breast cancer arises and progresses is urgently needed. The Epidermal Growth Factor Receptor 2 gene (ERBB2 or HER2) is amplified and overexpressed in approximately 20% of invasive breast cancers and is associated with metastasis and a poor prognosis (2). Trastuzumab is an FDA-approved humanized antibody targeting HER2 and, in the adjuvant setting, is used together with chemotherapy to treat HER2-overexpressing breast cancers. However, 70% of treated patients do not respond to trastuzumab and 66-88% of initial responders become resistant to the drug (3). Despite numerous research and clinical studies, attempts to interfere with the action of the HER2 receptor alone have failed to yield a widely effective treatment. Therefore, it is important to identify proteins within this pathway that could be targeted in combination with trastuzumab or where trastuzumab fails.

p95-HER2, a truncated form of HER2 lacking the extracellular domain, is expressed in human breast tumors, where it activates multiple signaling pathways based on its ability to form homodimers (4). Notably, p95-HER2 evokes mammary tumor growth and metastases in preclinical models (5). Similarly, expression of a splice variant of HER2 lacking exon 16, named Delta-HER2, has been shown to increase the anchorage-independent colony formation potential and tumorigenicity of rodent fibroblasts (6, 7). Delta-HER2 is the result of an in-frame deletion of exon 16 that produces a splice variant of HER2 lacking 16 amino acids in the juxtamembrane domain. This deletion causes an imbalance of cysteine residues and leads to the formation of disulphide-bridged homodimers and the constitutive activation of Delta-HER2 (7, 8).
Interestingly, Delta-HER2 expression, which makes up ~2-9% of HER2 mRNA in human breast carcinomas (7, 9), correlates with the presence of lymph node metastases in human breast cancers and was suggested to confer resistance to trastuzumab in *in vitro* studies (10). Here, we describe the effects of Delta-HER2 in human breast epithelial cells. Overexpression of Delta-HER2, but not wild-type (WT)-HER2, increased and sustained proliferation, increased migration, and reduced apoptosis in MCF10A cells. It also led to the formation of invasive structures in 3D cultures. Furthermore, unlike WT-HER2, overexpression of Delta-HER2 in human breast cells evoked mammary tumors and lung metastases when injected into the mammary gland of immunodeficient mice. We have used proteomics and genomics approaches to identify changes in the phosphotyrosine proteome and in the transcriptome downstream of Delta-HER2. Together, the results presented increase our understanding of the activity of this tumorigenic splice variant of HER2 and reveal potential novel targets for HER2-positive breast cancer therapy.

MATERIALS AND METHODS

Cell culture and constructs. Breast cancer cell lines BT474, SKBr3, ZR7530, T47D, HCC1965, MDA-MB-361, MDA-MB-231, MCF7, and ZR75.1 were grown as monolayer cultures as recommended by ATCC. Primary human mammary epithelial cells MP5, MP8 and MP9 were prepared from reduction mammoplasty tissue obtained with appropriate informed consent and cultured as described previously (11). The immortalized but non-transformed MCF10A cells were grown and stained (12) as described previously. Briefly, in monolayer cultures, MCF10A cells were cultured in DMEM/F12 medium (Invitrogen) supplemented with 5% horse serum.
(Hyclone), 20 ng/ml epidermal growth factor (EGF) (Peprotech), 0.5 µg/ml hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma), 10 µg/ml insulin (Sigma), 100 IU/ml penicillin, and 100 µg/ml streptomycin. For 3D cultures, DMEM/F12 medium was supplemented with 2% horse serum, 5 ng/ml EGF, 0.5 µg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 µg/ml insulin, 100 IU/ml penicillin, and 100 µg/ml streptomycin. To distinguish between specific effects of Delta-HER2 and signals emanating from growth factors in the medium, the cells were grown in DMEM/F12 medium supplemented with 100 IU/ml penicillin and 100 µg/ml streptomycin. WT-HER2 and Delta-HER2 were cloned into the pSD69 vector (11).

RNA isolation, cDNA synthesis and primer sequences. RNA was extracted with TRIzol reagent (Sigma) and cDNA synthesized using ThermoScript RT-PCR System (Invitrogen) according to the manufacturer’s instructions. The following primers were used for SYBR green-based quantitative RT-PCR: WT-HER2 forward 5’-CTGCACCCACTCCTGTGTGGACCTG-3’ and reverse 5’-CTGCCGTCGCTTGATGAGGATC-3’; Delta-HER2 forward 5’-CTGCACCCACTCCCCTCTGAC-3’ and reverse 5’-CTGCCGTCGCTTGATGAGGATC-3’, and GAPDH forward 5’-GAAGGTGAAGGTCGAGTC-3’ and reverse 5’-GAAGATGGTGTGAGGGATTTCC-3’.

Primer validation and quantitative real-time PCR. The efficiencies of primer pairs for WT-HER2, Delta-HER2, and GAPDH were calculated from Ct values obtained from serial 10-fold dilutions by linear regression of the log dilution factor versus the Ct values. The resulting primer pair efficiency was obtained from the slope of the regression line using the formula $E=10^{(-1/slope)}$ (13); efficiencies were close to 2 for all primer pairs used. The specificities of the WT-HER2 primer pair for WT-HER2 and the Delta-HER2 primer pair for the splice variant Delta-HER2 were tested using MCF10A and MCF7 cell lines expressing either WT-HER2 or Delta-HER2,
respectively. The ratios of WT-HER2 and Delta-HER2 expression in human breast tumors were calculated from $T_{\text{Delta-HER2}}/T_{\text{WT-HER2}} = (E_{\text{WT-HER2}})^{Ct_{\text{WT-HER2}}} / (E_{\text{Delta-HER2}})^{Ct_{\text{Delta-HER2}}}$, where T is the amount of mRNA, E is the primer efficiency, and Ct is the threshold cycle, as previously described (9, 13).

Human tumor samples. We obtained RNA samples of 8 human primary breast tumors from Origene. Tumors 1-4 (CR562849, CR560615, CR560630, CR560397) were HER2 amplified and tumors 5-8 (CR562432, CR559736, CR560329, CR561507) were HER2 positive.

Immunoblotting and antibodies. Total protein lysates for immunoblotting were obtained using L-buffer (2.5% SDS, 250 mM Tris-HCl pH 7.4). The following antibodies were used: anti-HER2 (Calbiochem), anti-pHER2 (Tyr1248, Millipore), anti-AKT pan (Cell Signaling), anti-pAKT (Ser473, Cell Signaling), anti-ERK2 (Santa Cruz), anti-p-ERK1/2 (Thr202/Tyr204, Cell Signaling), anti-N-cadherin, anti-E-cadherin (BD Biosciences), and anti-K8 (Fitzgerald).

FACS analysis. MCF10A cells were dissociated with HyQTase (HyClone) and stained with annexin V antibodies (Invitrogen) according to the manufacturer’s protocols or with propidium iodide (Sigma). After staining, cells were analyzed by flow cytometry.

Transwell migration assays. Migration assays were performed using transwell chambers (8 μm pore size, BD Biosciences) according to the manufacturer's protocol. Briefly, starved cells were seeded in the upper chamber at a concentration of 25,000 cells in 500 μl medium and 750 μl full growth medium was added to the lower chamber. The cells were incubated for 24 h at 37°C in 5% CO₂. Cells remaining in the upper chamber were removed using a cotton swab and cells on the lower surface of the membrane were fixed with 4% paraformaldehyde, stained with 0.2% crystal violet and imaged using a Leica MacroFluo microscope.
Animal experiments. Experiments with SCID-beige mice (Jackson Labs) were carried out according to Swiss national guidelines on animal welfare. For orthotropic injection, 0.5- to 1 x 10^6 MCF10A cells or 1 x 10^6 MCF7 cells expressing WT-HER2 or Delta-HER2 were suspended in 100 μl of a 1:1 mixture of Basement Membrane Matrix Phenol Red-free (BD Biosciences) and PBS and injected into the mammary gland. For intravenous studies, MCF10A-Delta-HER2 cells were suspended in 50 μl PBS and injected into the tail vein. Trastuzumab (10 mg/kg) was administered i.p. 3 times per week as described previously (14).

Immunohistochemistry. Staining of tumor and lung tissues was performed automatically in a DiscoveryXT instrument (Ventana Medical Systems) using the Research IHC DAB MapXT procedure. Paraffin was melted at 70°C for 30 min followed by 10 min at room temperature. Slides were incubated for 1 h at 37°C after a mild CC1 pre-treatment and manual application of HER2 antibody (Dako) at a dilution of 1/50. A biotinylated donkey anti-rabbit secondary antibody (Jackson Laboratories) was applied automatically followed by incubation for 32 min at 37°C. Sections were counterstained with Hematoxylin II and Bluing Reagent (Ventana Medical System), dehydrated, and mounted in Neo Mount (Merck).

Phosphotyrosine peptide profiling. Peptides containing pTyr residues were purified from trypsinized cell lysates using a two-step procedure and analyzed by LC-MSMS (LTQ Orbitrap XL, Thermo) as described (15). For relative quantification, duplicate runs for each sample were analyzed using Progenesis LCMS (Nonlinear Dynamics). All data are expressed as log2 ratios (Delta-HER2/WT-HER2). Database searches were performed with Mascot Server using the human IPI database (version 3.64). Mass tolerances were set at 10 ppm for full MS scans and at 0.8 Da for MSMS. Peptide identifications with a Mascot score of >20 were accepted. In cases of
ambiguous assignment, spectra were interpreted manually to confirm the identity and localization of phosphorylation sites.

Microarray analysis. Total RNA was extracted from tumors with TRIzol reagent (Invitrogen), processed with a GeneChip WT cDNA Synthesis Kit and a GeneChip WT Terminal Labeling Kit (Affymetrix), hybridized for 16 h to GeneChip Human Gene 1.0 ST arrays (Affymetrix), washed and scanned on a GeneChip Scanner 3000 with an autoloader according to the manufacturer’s instructions. Expression values were normalized and probeset-level values calculated with robust multi-array average (RMA) as implemented in the R/Bioconductor package affy (R version 2.14). Contrasts between MCF10A-Delta-HER2 and the other groups were computed with LIMMA (R/Bioconductor package). The data were filtered for a log-fold change LogFC>2 between MCF10A-Delta-HER2 and MCF10-WT-HER2 to retrieve the “Delta-HER2 signature” (Supplementary Table 2) comprising 84 highly significant upregulated genes (adjusted $P < 3.54E-04$). CEL files have been deposited in the GEO repository (GSE42781). Unsupervised hierarchical clustering was performed with Gene Cluster 3.0 (16). Expression values of annotated probe sets were filtered for a standard deviation >0.6 among the arrays. The resulting matrix containing 968 genes was mean centered and normalized. Uncentered correlation and centroid linkage were selected for the analysis. Java Treeview 1.1.6r2 (A. Saldanha, Stanford (5)) was used to visualize the data. Gene Set Analysis (GSA) on primary breast tumors was performed with the “Gene Expression-Based Outcome of Breast Cancer Online” (GOBO) platform (17) as described previously (18). Association of the Delta-HER2 signature with clinical parameters was conducted on a merged dataset comprising 1881 primary breast tumor samples obtained from multiple experiments. Distant metastasis-free survival for 10 years and two quantile analyses were performed.
RESULTS AND DISCUSSION

Expression of Delta-HER2 increases proliferation and migration of mammary cells

To address the effects of Delta-HER2 versus WT-HER2 signaling, we expressed human WT-HER2 or Delta-HER2 in the immortalized but non-transformed human breast epithelial cell line MCF10A and in the human breast cancer cell line MCF7 and compared expression to a panel of breast cancer cell lines (Supplementary Figure 1A). The expression of Delta-HER2 in human breast tumors and cancer cell lines and in normal human breast cells was compared to the engineered MCF10A- and MCF7-Delta-HER2 cells. The efficiencies and specificities of primers designed to specifically detect either Delta-HER2 or WT-HER2 (Supplementary Figure 1B) were validated in MCF10A and MCF7 cells expressing WT-HER2 or Delta-HER2 (Figure 1A and Supplementary Figure 1C). As expected, WT-HER2 was highly expressed in HER2-positive breast tumors and cancer cell lines but not in normal human breast cells. Notably, Delta-HER2 was expressed in all eight primary HER2-positive human breast tumors and in some cell lines (Figure 1A); the ratio of Delta-HER2 to WT-HER2 in tumors ranged from 0.7 to 3% (Supplementary Figure 1D). Delta-HER2 expression in the engineered MCF10A- or MCF7-Delta-HER2 cells was comparable to or lower than that in the primary HER2-positive human breast tumors (Figure 1A).

Overexpression of Delta-HER2 in MCF10A cells increased proliferation relative to the control or to the overexpression of WT-HER2 (Figure 1B). Measurements of apoptosis by staining with anti-annexin V antibodies and propidium iodide (PI) showed that the proportions of both annexin V-positive and PI-positive cells were markedly lower in MCF10A-Delta-HER2
cells than in the controls (Figure 1B). Thus, increased proliferation was accompanied by reduced cell death in MCF10A-Delta-HER2 cells.

Moreover, as shown by wound-healing and transwell migration assays, overexpression of Delta-HER2 in MCF10A cells, but not of WT-HER2, increased their motility (Figure 1C, Supplementary Figure 1E). Interestingly, comparison of the phosphorylation status of several signaling molecules of the HER2 pathway in the absence of growth factors showed higher phosphorylation of HER2, ERK and AKT in MCF10A-Delta-HER2 cells than in the MCF10A control or MCF10A-WT-HER2 cells (Figure 1D).

To assess the effects of low-level expression of Delta-HER2, we generated MCF10A cells expressing Delta-HER2 or WT-HER2 (lines A, B and C) at levels lower than MCF10A-Delta-HER2 or MCF10A-WT-HER2 (Figure 1A and Supplementary Figure 2A). Notably, low levels of Delta-HER2 but not of WT-HER2 increased the phosphorylation of ERK and AKT in starved cells (Supplementary Figure 2A, B). Moreover, low-level expression of Delta-HER2 was sufficient to induce migration in transwell migration assays (Supplementary Figure 2D). Together these results indicate that expression of Delta-HER2 in MCF10A cells, but not of WT-HER2, at levels found in human tumors increases cell proliferation and migration and decreases apoptosis; these effects were accompanied by constitutive activation of HER2, ERK and AKT signaling.
Expression of Delta-HER2 induces epithelial-to-mesenchymal transition and invasion in 3D cultures

We examined whether expression of Delta-HER2 is associated with epithelial-to-mesenchymal (EMT) transition of MCF10A cells. To this end, we assessed the expression of E-cadherin, cytokeratin 8 and N-cadherin in MCF10A-WT-HER2 and MCF10A-Delta-HER2. Delta-HER2 expression in MCF10A cells was associated with downregulation of the epithelial markers cytokeratin 8 and E-cadherin and upregulation of the mesenchymal marker N-cadherin (Figure 2A and 2B). Thus, unlike WT-HER2, Delta-HER2 expression resulted in EMT of MCF10A cells.

MCF10A control, MCF10A-WT-HER2, and MCF10A-Delta-HER2 cells were grown in 3D cultures for 10 days to assess invasion. Consistent with the migration and EMT results, Delta-HER2 expression caused the formation of highly invasive structures in 3D cultures (Figure 2C). Staining for the proliferation marker Ki67 and the polarization markers laminin5 and GM130 revealed an increase in the proportion of Ki67-positive cells in MCF10A-WT-HER2 and MCF10A-Delta-HER2 cultures compared with the control structures; there was no difference between structures expressing WT-HER2 or Delta-HER2 (Supplementary Figure 3). Furthermore, after 10 days in 3D culture, the MCF10A control and WT-HER2 cells were polarized (the acinar structures displayed a basal expression of laminin5 and an apical expression of GM130), whilst the expression of Delta-HER2 impaired polarization (Supplementary Figure 3). Staining MCF10A control, MCF10A-WT-HER2 and MCF10A-Delta-HER2 cells in 3D cultures for Ki67 after 15 days showed no difference in proliferation between control and MCF10A-WT-HER2 cells. In contrast, the expression of Delta-HER2 increased proliferation relative to the MCF10A control and WT-HER2 cells. Thus, Delta-HER2-induced proliferation,
unlike WT-HER2, was a sustained effect present at both day 10 and 15 (Figure 2D). Altogether, these data show that expression of Delta-HER2 sustains proliferation, mediates EMT, impairs polarization of mammary acinar structures, and induces invasion in 3D cultures.

Expression of Delta-HER2 induces tumor formation and metastasis

We examined whether the expression of Delta-HER2 in mammary epithelial cells is tumorigenic *per se*. To this end, we injected MCF10A or MCF7 cells expressing a control vector, WT-HER2 or Delta-HER2 (Supplementary Figure 1A) into mammary glands of immunodeficient mice and assessed subsequent tumor development and growth. MCF10A-Delta HER2 but not MCF10A-WT-HER2 cells formed tumors when injected orthotopically into mice (Figure 3A, *left graph*). The expression of Delta-HER2 in MCF7 cells increased MCF7 tumor growth while WT-HER2 did not (Figure 3A, *right graph*). Dissection of the lungs of MCF10A-Delta-HER2 tumor-bearing animals, followed by H&E and HER2 immunohistochemical staining (Supplementary Figure 4A), showed that 66% of mice bearing MCF10A-Delta-HER2 tumors developed lung metastases (Figure 3B). Furthermore, injection of MCF10A-Delta-HER2 cells into the tail vein of immunodeficient mice resulted in lung metastases in 71% of the animals (Figure 3B). Thus, Delta-HER2 is tumorigenic and metastatic when expressed in MCF10A cells, and also accelerated tumor onset and increased the tumor volume of MCF7 cells grown as xenografts. Consistent with the results *in vitro* (Supplementary Figures 2A-C), low expression levels of Delta-HER2 in MCF10A evoked mammary tumors when injected into immunodeficient mice (Supplementary Figure 2D).
Previous *in vitro* studies have reported that the HER2-targeting monoclonal antibody trastuzumab is ineffective when applied to Delta-HER2-expressing cells *in vitro* (10). Given the clinical importance of this observation, we asked whether this is also the case *in vivo*. MCF10A-Delta-HER2 cells were injected into immunodeficient mice and the mice treated with trastuzumab upon tumor development. In contrast to the previous *in vitro* findings (10), trastuzumab blocked tumor growth and proliferation (Figure 3C and Supplementary Figure 4B). These results show that the Delta-HER2-evoked tumors were sensitive to trastuzumab *in vivo* and that they remained dependent on oncogenic signaling pathways emanating from the expression of this splice variant.

Delta-HER2 expression is associated with a distinct signaling cascade

To gain further insight into the signaling networks initiated by Delta-HER2 expression, we first compared protein-tyrosine phosphorylation events in MCF10A-WT-HER2 and MCF10A-Delta-HER2 cells using mass spectrometry. This analysis revealed a distinct tyrosine-phosphorylation signature of MCF10A-Delta-HER2 cells, including increases in several known mediators of HER2 signaling (e.g. GAB1 and PTPN11) as well as the tyrosine phosphorylation of proteins not previously linked to the HER2 pathway (e.g. CDCP1) (Figure 4A and Supplementary Table 1). Moreover, microarray analysis of RNA extracts obtained from MCF10A cells expressing an empty vector, WT-HER2 or Delta-HER2 revealed a specific set of genes that were upregulated in MCF10A-Delta-HER2 cells (Figure 4B and Supplementary Table 2). Most of these genes belong to the growth factor/cytokine family but also to cellular proliferation pathways (Supplementary Table 2). In an analysis of the “Delta-HER2 signature” genes in a breast cancer
dataset (17, 18), their high expression correlated with clinicopathological parameters such as ER-negative status, high tumor grade and poor distant metastasis-free survival (Figure 4C).

Altogether, our data strongly suggest that the Delta-HER2 splice variant mediates proliferation, invasion and tumorigenesis associated with metastatic spread when expressed in mammary cells. Analysis of the signaling cascade downstream of Delta-HER2 revealed increased tyrosine phosphorylation of several signaling molecules (some not previously linked to HER2 activation), as well as the expression of a “Delta-HER2” signature associated with ER-negative status, high tumor grade and metastasis in breast cancer patients. These results may lead to the identification of novel therapeutic targets for treating Delta-HER2-positive breast cancers.

ACKNOWLEDGEMENTS

We thank Patrick Ringenbach, Sylvie Thiebault and Veronique Lindner (Centre Hospitalier de Mulhouse, Emile Muller) for providing mammary tissue, Gwen MacDonald (FMI) for technical assistance, Michael Stadler (FMI) for statistical analysis, and members of the Bentires-Alj lab for advice and discussions. Research in the lab of M.B-A. is supported by the Novartis Research Foundation, the European Research Council (ERC starting grant 243211-PTPsBDC), the Swiss Cancer League, and the Krebsliga Beider Basel.
FIGURE LEGENDS

Figure 1. Delta-HER2 expression increases proliferation and migration but decreases apoptosis in mammary epithelial cells in vitro. (A) Quantitative real-time PCR analysis of WT-HER2 and Delta-HER2 expression in breast cancer cell lines, human breast tumors (tumors 1-4 with HER2 amplification, tumors 5-8 HER2-positive) and in human breast epithelial cells isolated from reduction mammoplasties (MP5, MP8 and MP9). Results represent means ± SEM (n=3-9). (B) (Left) MCF10A cells were grown in starvation medium (DMEM/F12) for 1, 2, 3 or 4 days and the number of cells counted. The bar graph shows the absolute mean cell number (10^3) over time ± SD (n=6, *P <3.46E-06). (Middle) MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 were grown for 4 days in starvation medium and analyzed by flow cytometry for annexin V expression. The bar graph shows the mean percentage of annexin V-positive cells ± SD (n=6, **P <0.00027). (Right) MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 were grown for 2 days in starvation medium, stained with propidium iodide (PI) and analyzed by flow cytometry. The bar graph shows the percentage of PI-positive cells ± SD (n=4, **P <2.6E-06). (C) (Left) Wound-healing assay with MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2. The bar graph shows the mean percentage of wound closure ± SD (n=6, **P <5.16E-06). (Right) Transwell assays with starved MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2. The bar graph shows the mean number of migrated cells ± SD (n=3, *P <0.05). (D) (Top) Immunoblot of lysates from MFC10A cells expressing a control vector, WT-HER2 or Delta-HER2. The cells were grown for 16 h in the presence or absence of growth medium (GM). (Bottom) Immunoprecipitation (IP) of HER2 followed by immunoblotting with the indicated antibodies.
Figure 2. Delta-HER2 expression induces EMT and promotes invasion, proliferation and loss of polarity in 3D cultures. (A) (Top) Representative phase-contrast images of MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 grown in monolayers. (Bottom) Immunostaining of E-cadherin (green) on MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 grown in monolayers. DAPI (blue) stained nuclei. (B) Immunoblot of lysates from MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 and grown in monolayers. (C) (Left) Representative phase-contrast images of MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2 and grown in 3D cultures for 10 days. (Right) The bar graph shows the mean percentage of invasive structures ± SD (n=3, **P<4.2x10^{-6}). (D) (Left) Representative confocal images of equatorial cross-sections of MCF10 cells expressing a control vector, WT-HER2 or Delta-HER2 grown in 3D cultures for 15 days and stained for Ki67. (Right) The bar graph shows the percentage of Ki67-positive cells. Results represent means ± SEM (n=4, *P<0.05, **P<0.005).

Figure 3. Overexpression of Delta-HER2 induces mammary tumors and lung metastases. (A) (Left) Tumor growth curves of MCF10A cells expressing WT-HER2 or Delta-HER2 showing mean tumor volumes (mm^3) ± SD (n=10, **P<1.8E-07). (Right) Tumor growth curves of MCF7 cells expressing a control vector, WT-HER2 or Delta-HER2 showing the mean tumor volumes (mm^3) ± SD (n=6, **P <0.001). (B) Table showing the numbers and percentages of mice that developed lung metastases after intravenous (i.v.) injection of MCF10A cells expressing Delta-HER2 or bearing a MCF10A-Delta-HER2 primary tumor (p.t). (C) MCF10A-Delta-HER2 tumor-bearing mice were treated after tumors became palpable (7 days) with vehicle (PBS) or trastuzumab (10 mg/kg) 3 times per week. (Left) Tumor growth curves of
MCF10A cells expressing Delta-HER2 and treated with vehicle or trastuzumab showing mean tumor volumes (mm³) ± SD (n=9, **P < 0.001). (Right) Bar graph showing mean tumor weights (g) ± SD (n=9, **P < 0.001).

Figure 4. Effects of Delta-HER2 expression on the transcriptome and phosphotyrosine proteome. (A) Plot of the log2 ratios of Delta-HER2/WT-HER2 phospho-peptides identified by mass spectrometry. (B) Unsupervised hierarchical clustering of the microarray data obtained from MCF10A cells expressing a control vector, WT-HER2 or Delta-HER2. The rectangle highlights the genes specifically upregulated in MCF10A-Delta-HER2 cells and referred to as the “Delta-HER2 signature”. (C) Gene Set Analysis (GSA) of the “Delta-HER2 signature” genes in a dataset comprising 1881 primary breast tumors (17). (Top) Box plot of “Delta-HER2 signature” gene expression in ER-negative and ER-positive primary breast cancers; P <0.0001 by ANOVA. (Middle) Box plot of “Delta-HER2 signature” gene expression in grade 1, 2 and 3 primary breast cancers; P <0.0001 by ANOVA. Numbers above the charts show the numbers of patients in each group. (Bottom) Kaplan-Meier plot indicating the distant metastasis-free survival time of patients bearing breast tumors with low or high expression of “Delta-HER2 signature” genes.
REFERENCES

Mammary tumor formation and metastasis evoked by a HER2 splice variant

Cancer Res Published OnlineFirst July 18, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-3186

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2013/07/18/0008-5472.CAN-12-3186.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2013/07/18/0008-5472.CAN-12-3186. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.