Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses

Mia Niklasson1,2, Gianluca Maddalo3, Zuzana Sramkova2,4, Ercan Mutlu5, Shimei Wee2, Petra Sekyrova2,4, Linnéa Schmidt1, Nicolas Fritz6, Ivar Dehnisch7, Gregorios Kyriatzis2, Michaela Krafckova4, Brittany B. Carson2,8, Jennifer M. Feenstra2,8, Voichita D. Marinescu1, Anna Segerman1, Martin Haraldsson9, Anna-Lena Gustavsson9, Lars G.J. Hammarström9, Annika Jenmalm Jensen9, Lene Uhrbom1, A.F. Maarten Altelaar3, Sten Linnarsson7, Per Uhlén7, Lukas Trantirek4, C. Theresa Vincent2,8, Sven Nelander1, Per Øyvind Enger5,10, and Michael Andäng2,4

Abstract

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca$^{2+}$ and K$_{Ca}$ channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na$^+$, which compromised Na$^+$-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. Cancer Res; 77(7); 1-12. ©2017 AACR.

Introduction

Glioblastoma multiforme (GBM) is a highly heterogeneous brain tumor with a population of cancer cells endowed with glioma tumor-initiating capacity, the glioma-initiating cells (GIC; refs. 1, 2). These cells share gene expression with stem cells (3, 4) and continuously resupply the bulk tumor through self-renewal and differentiation (5). GICs have high drug efflux capacity and slow proliferation rate, which results in increased chemoresistance and radiotherapy resistance (6, 7), fostering rapid tumor relapse after therapy. Hence, there is an urgent need for therapies that would specifically target this tumor cell population, sparing normal cells. In line with other researchers (8, 9), we recently showed that tumor-initiating cells are sensitive to disturbed Ca$^{2+}$ homeostasis (10), making ion channels appealing targets in GICs. Noteworthy, ion channels are also known to be dysregulated during cancer formation and progression (11).

The human genome encodes approximately 400 ion channels, which control a multitude of biological processes such as ion and osmotic homeostasis and nutrient import, all vital for cell viability. For example, voltage-gated calcium channels (VGCC) trigger catabolic cellular responses in cancer cells (12, 13). However, the causal signaling pathways preceding this phenomenon are unknown, although stimulation of nonselective transient receptor potential cation channels (TRPV1) in GICs has been shown to compromise their viability via endoplasmic reticulum (ER) stress (14).

Here, we screened a library of ion channel blockers in 44 different GICs and identified sets of ion channel blockers that selectively impaired viability of GICs, and increased survival in a mouse model of human GBM. Importantly, using a systems...
A) 

![Diagram showing the input and screen output of compounds with cell viability effect](image)

B) 

![Diagram showing the effects of various compounds on calcium and potassium levels](image)

C) 

![Diagram showing the timeline of drug treatment, MRI, and sacrifice upon symptoms](image)

D) 

![Graph showing the probability of survival for DMSO, oral, and Niguldipine](image)

E) 

![Graph showing the probability of survival for DMSO, i.p., and Penitrem A](image)

F) 

![Graph showing the tumor volume (Log2) for DMSO, Penitrem A, and Niguldipine](image)

G) 

![Images showing MRI scans for control and Penitrem A treatment](image)
biology approach, we describe the molecular mechanisms of action of these ion channel blockers.

Materials and Methods

For detailed procedures of all methods, see Supplementary Information.

Cell culture

All GIC lines are GBM patient-derived primary cell lines grown as monolayer cultures on laminin in neural stem cell culture media, as described previously (2, 10, 15, 16). Cells were used for experiments between passages 15 and 30, at least one passage after thawing. GlinNS1, G179NS, and G166NS were a kind gift from Dr. Peter Dirks (The Hospital for Sick Children, Toronto, Canada) in 2009, at the time of publication (15), and the U3NNN-MG cell lines were obtained continuously from the Uppsala University Human Glioma Cell Culture (HGCC) collection (16). All cells are well characterized (15, 16) and authenticated by short tandem repeat profiling. Cells have been tested negative for mycoplasma using the MycoAlert Plus Mycoplasma Detection Kit (Lonza). Furthermore, RNA sequencing of the GlinNS1, G179NS, and G166NS lines verified expression of the markers for glioma subtype as published previously (15).

Drug screening

In the primary screen, Ion Channel Library (Biomial, catalog #2805) as well as clofilium (Sigma-Aldrich) and terfenadine (Sigma-Aldrich) were added (10 μmol/L) to the 384-well microplates 24 hours after GIC seeding, followed by 48-hour incubation, in at least three independent experiments, and analyzed with CellTiterGlo viability assay (Promega). In the secondary screen, 48 GIC lines (U3NNN-MG series) were screened in dose-response in 384 microwells. Subsequent analyses were done in 96-well format using the CellTiterGlo assay.

Xenograft injections

The animal experiments were performed in accordance with the regulations at the Regional Ethical Committee at Haukeland University Hospital. Biopsy spheroid cultures (P3) were prepared as described previously (17) and implanted into the brain parenchyma of NOD/SCID mice (18). Tumor growth was monitored by MRI scanning. Animals received compound or DMSO daily for 28 days. Survival data were plotted according to the Kaplan–Meier method (GraphPad PRISM 6.0d).

Proteomics and phosphoproteomics analyses

Protein expression levels and phosphoproteomics analyses at 0 (control), 2, and 6 hours upon niguldipine treatment (10 μmol/L) were performed using a dimethyl approach (19). For the phosphoproteome analysis, Ti³⁺-IMAC phosphopeptide enrichment was performed (20) prior to LC/MS-MS analysis.

RNA sequencing

GICs were treated as indicated for 7 hours and subsequent sample preparation, sequencing and analysis was done as described previously (10). Briefly, the Illumina Low-Throughput TruSeq RNA Sample Preparation Kit protocol was used for bar-coded cDNA library preparation. Samples were sequenced on an Illumina HiSeq 2000 sequencer.

Immunocytochemistry, IHC, and Western blot analysis

Immunocytochemical staining was done overnight at 4°C using antibodies against DDI3 (Abcam) and BiP (Abcam). Immunohistochemical analysis on sections from patient samples was performed using antibodies against CACNA1G (HPA004714, The Human Protein Atlas, Sweden) and CACNA1H (HPA39125). Western blot analysis was performed using antibodies against anti-PERK and anti-phospho-EIF2alpha (Cell Signaling Technology). Total protein was detected on the membrane using Coomassie brilliant blue G-250 and analyzed with Image Lab 5.2.1 software (Bio-Rad).

Membrane potential measurement

For membrane potential measurements, GICs were dissociated to a single-cell suspension and preincubated for 30 minutes with DIBAC (1 μmol/L, Invitrogen). After compound addition, cells were incubated for indicated time periods and immediately analyzed by flow cytometry (FACSscan; BD Biosciences).

Live-cell Na⁺ imaging

For Na⁺ imaging, cells (U3013MG) were seeded on laminin-coated coverslips at approximately 70% confluency. The next day, GIC culture medium was exchanged for DMEM without phenol red (Gibco, Life Technologies, 21063-029) and cells were loaded with the Na⁺ -sensitive dye Asante NaTRIUM Green-2 (5 μmol/L, TFLabs). Niguldipine (20 μmol/L, Tocris) and penitrem A (20 μmol/L, Tocris) were added directly to the media.

Amino acid uptake assay

GIC line G166NS was selected and 25,000 cells/well were seeded on day 1 onto laminin-coated 24-well, flat-bottom plates
Niguldipine treatment:

Proteomics workflow

- Cell lysis: 8M Urea
- Protein digestion: Lys-C/Trypsin
- Triplex dimethyl labelling
- Phospho proteome
- LC/MS-MS

Ion homeostasis

- SLC25A10 (monocarboxylate transport)
- ATP1B3 (Na+ / K+ transport)
- STOML2 (mitochondrial calcium homeostasis)
- GPM6A (Ca2+ regulation)
- PODXL (Na+/H+ exchange)
- STIM1 (Ca2+ regulation)
- ACACA (fatty acid synthesis)
- SLC25A1 (tricarboxylate transport)
- SLC44A1 (choline transport)

Transport/metabolism

- SLC12A4 (Na+ / K+ / Cl transport)
- ATP1B1 (Na+ / K+ transport)
- ATP1B3 (Na+ / K+ transport)
- ATP2B4 (Ca2+ transport)
- SLC3A2 (LAT1 subunit, Na+ independent aa transport)
- SLC3A2 (LAT1 subunit, Na+ independent aa transport)
- SLC44A1 (choline transport)

Protein synthesis and turnover

- EIF4G2
- EIF4G1
- EIFRS1P
- EIF4H
- EIF4
- RNF126, RNF181, RNF2 and UBE2L3 (E3 ubiquitin-protein ligases)
- SAR1A
- SQSTM1

Downregulated protein levels at 2 and/or 6 h
Upregulated protein levels at 2 and/or 6 h
Increased protein phosphorylation
Decreased protein phosphorylation

Cancer Res; 77(7) April 1, 2017
Published OnlineFirst January 13, 2017; DOI: 10.1158/0008-5472.CAN-16-2274
(VWR). L-[14C]-Glutamic Acid (14C-glutamate)(PerkinElmer; 1 µCi) was added to each well and incubated at 37 °C for 30 minutes to allow active uptake. Labeled cells were washed 3 times with ice-cold PBS and dissolved in 150 μL 0.5 mol/L sodium hydroxide. All 150 μl was measured for radioactivity using Aquasafe 300 Plus scintillation cocktail fluid (Zinsser Analytic) and Wallac 1209 Rackbeta liquid scintillation counter (LKB). The radioactive readout of the compound-treated samples was normalized against the DMSO-treated samples.

**Results**

A screen of ion channel blockers identifies Ca2+ channel blockers and targets that decrease GIC viability

To explore the spectrum of channel blockers that might target glioma cell viability, we used patient-derived glioblastoma cells cultured in neural stem cell media on laminin. These cell culture conditions maintain the GICs (15), in contrast to serum-grown GBM cell lines, and we henceforth use the term GIC. We screened a library of 72 ion channel blockers in four different GIC lines (Supplementary Table S1). Of these, 12 induced at least a 30% decrease in cell viability (Fig. 1A and B; Supplementary Table S1). Notably, these drugs act at different points in the Ca2+ signaling network, although clofibrate and the penitrem A are categorized as K+ channel blockers (Fig. 1B). As some of the hit compounds also have Ca2+-unrelated targets such as α-adrenergic receptors and human ether-à-go-go-related gene (hERG) channels that are expressed in GICs (data not shown), we performed a counter-screen against these targets. No or weak effect on cell viability was observed (Supplementary Fig. S1A and S1B), suggesting that Ca2+ homeostasis is the main target for the identified ion channel blockers.

The two most potent compounds identified in the channel blocker screen were the Ca2+-ionophore A23187 and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin (Fig. 1A and B), which we have previously reported to efficiently eradicate GICs (10). Interestingly, eight out of the ten novel compounds identified were VGCC inhibitors, among which niguldipine was the most efficient to reduce cell viability (Supplementary Table S1). The calcium-activated potassium channel (Kca) blocker penitrem A showed similar efficacy compared with niguldipine. Noteworthy, Kca channels are K+-permeable channels that may coassemble with VGCCs in functional nanodomains (21) and become activated in response to elevated intracellular Ca2+, and cooperate to regulate membrane potential (21). VGCCs are assembled by >20 different channel-forming and modulatory subunits (α, αδ, β, and γ), and they are overexpressed in cancer cells (Pedersen and Stock, 2013), which provides grounds for cell specificity. Therefore, niguldipine and penitrem A were chosen for further validation.

Niguldipine and penitrem A increase survival in a mouse model of human GBM

Forty-five additional low-passage GIC lines from the HGCC repository (16) were next tested for niguldipine and penitrem A sensitivity in dose–response analyses, and viability effects in GICs were compared with normal nonmalignant cells (human astrocytes and fibroblasts) and HepG2 liver carcinoma cells (Supplementary Fig. S1C and S1D; Supplementary Table S2). All GICs were found to be selectively sensitive to niguldipine and penitrem A compared with the reference cell types (Supplementary Fig. S1C and S1D). We next tested whether this drug sensitivity could be linked to a specific GBM subtype (according to the Verhaak classification; ref. 22) of the HGCC lines. However, no such link was found (Supplementary Fig. S1E). GICs have the potential to form gliospheres in vitro, but this ability was abolished by niguldipine and penitrem A treatment (Supplementary Fig. S1F).

To investigate ion channel blocker selectivity and efficacy in vitro, effects were analyzed in an orthotopic glioma NOD/SCID mouse model (Fig. 1C). Human GBM spheroids (P3 patient-derived cells expressing markers for a classical, CL, subtype (22); Supplementary Fig. S1G) were transplanted into mouse brains (18, 23), and the mice were treated with niguldipine (orally) or penitrem A (intraperitoneal injection). Niguldipine-treated animals had significantly longer median survival (33 days) compared with control animals (21 days, P = 0.038; Fig. 1D). Mice treated with penitrem A also showed a significant increase in survival (P = 0.015; Fig. 1E) and a trend for lower tumor volume compared with controls in the mice that survived the longest (Fig. 1F).

Notably, the longest survivor showed a reduced tumor volume after treatment with the lowest dose of penitrem A (Fig. 1G). The data show that GBM tumors are sensitive to treatment with VGCCs and Kca channel blockers in vitro.

**T-type VGCCs are critical for viability in GIC**

As VGCCs are composed of several subfamilies (L-type, T-type, R-type, P/Q type, and N-type), we investigated whether a particular subgroup of VGCCs is targeted by niguldipine and is therefore crucial for GIC survival. The screen and a follow-up dose–response analysis showed that among the dihydropyridines (which block L-type VGCCs), only niguldipine affected significantly GIC viability (Supplementary Fig. S2A). Niguldipine is the only dihydropyridine that has an additional ability to inhibit T-type VGCCs (24); it is reported to inhibit T-type at least 10-fold more efficiently than L-type VGCCs (25), suggesting that T-type VGCCs are crucial for maintaining GIC viability. This was confirmed by the T-type blocker mibefradil, which reduced cell viability at <10 µmol/L concentrations in a dose–response assay in 29 GIC lines (Supplementary Fig. S2B; Supplementary Table S2). In addition, additional blockers towards different VGCCs confirmed the effect by yet another

---

**Figure 2.**

VGCC and Kca block induce the UPR pathway. **A**, Time-course analyses of the proteome and phosphoproteome at 0 (control), 2, and 6 hours in GCs upon niguldipine treatment. Proteins were digested by Lys-C/Trypsin, peptides were labeled using a dimethyl-labeling approach and fractionated by strong cation exchange (SCX) prior to LC/MS-MS for the protein expression levels analysis. For phosphoproteome analysis, TPF-IMAC phosphopeptide enrichment was performed prior to LC/MS-MS. **B**, Overview of selected proteins with significantly altered expression or phosphorylation levels (P < 0.05). **C**, UPR pathway induction in GICs was validated by immunofluorescent staining against CHOP and Bip (encoded by the HSPA5 gene) at 6 hours after administration of the Ca2+ ionophore A23187 (3 µmol/L) or blockers of VGCCs (niguldipine; 5 µmol/L) or Kca channels (penitrem A; 10 µmol/L). Scale bars, 10 µm. **D**, Statistical analysis of staining in C (DMSO control, n = 46 cells; A23187, n = 39; niguldipine, n = 24; penitrem A, n = 42. **P < 0.01; ***P < 0.001). **E**, Western blot analysis of the ER stress sensor PERK showing an electrophoretic mobility shift upon niguldipine, penitrem A, and A23187 treatment of GICs. **F**, Western blot analysis of phosphorylated eIF2α, the AUR/UPR target, in treated GICs.
2-Fold upregulation to a minimal expr of 1 RPKM

Penitrem A

Niguldipine

Mibebradil

A23187

Shared genes, examples:

DDIT3, FOS
HERPUD1, FOSB
XBP1, FOSS1
ASNS, FOSS2
TRIB3, GADD45B
ARHGEF2, GADD45A
SLC3A2, MYC
DDIT4, EGR1
PPP1R15A, EGR2
ATF3, EGR3
DDX2, JUN
TGIF1, JUNB
SESN2, LIE
CHAC1, CXCL10
SLC7A11, NFATC2
TNFAP2, GDF15
JDP2, CEBPB
KL4, CEBPD
NUPR1, VEGFA
AKNA, VCAM1
DUSP5, ICAM1

UPR-associated genes
AAR-associated genes

Niguldipine and penitrem A activated gene transcription

AAR Pathway

BP (HSPA6)

UPR Pathway

Niguldipine and penitrem A activated gene transcription

ATF6a (ATF6)

IRE1a (ERN1)

UPR-induced gene expression

ATF4, DDIT3, PPP1R15A
XBP1, ATF6, HERPUD1

Transcription

ATF4, CHOP (DDIT3)

ATF6a (ATF6)

IRE1a (ERN1)

UPR-induced gene expression

ATF4, DDIT3, PPP1R15A
XBP1, ATF6, HERPUD1

Transcription

ATF4, CHOP (DDIT3)
T-type VGCC blocker (TTA-P2; Supplementary Fig. S2C). Expression of T-type VGCC subunits was also confirmed both on gene and protein level in GIC lines and patient samples, respectively (Supplementary Fig. S2D–S2F). In conclusion, T-type VGCC blockers affected GIC viability and may thus constitute a potential lead targets for eradicating GICs.

Proteomics and phosphoproteomics analysis of channel block in GICs reveals activated unfolded protein response

As the current knowledge of downstream effects elicited by channel blockers is fragmented, we aimed to gain a systems-level understanding of the signaling pathways affected by channel block. To this end, a strategy that included extensive unbiased genome-wide analyses was used. A proteomics and phosphoproteomics approach was employed in a time-course unbiased genome-wide analyses was used. A proteomics and phosphoproteomics analysis of channel blocking was performed in a time-course study at 0 (control), 2, and 6 hours upon niguldipine treatment (Fig. 2A; Supplementary Fig. S3A–S3D; Supplementary Table S3). As LAT1 transports several amino acids independently of the plasma membrane Na⁺ gradient, its upregulation may indicate an adaptive response to disturbed ion homeostasis. Aside from LAT1, several other proteins involved in nutrient transport and metabolism were significantly altered upon niguldipine treatment (Fig. 2B). Notably, our data mining of the transcriptome analyses in the report by Hahn and colleagues (26) showed that LAT1 is induced by the unfolded protein response (UPR) pathway, which senses and responds to disturbed ion homeostasis.

In-depth analyses of the proteomics and phosphoproteomics data revealed alterations of a number of proteins associated with the UPR pathway (27, 28) by niguldipine, such as upregulation of target genes of the UPR-associated transcription factors ATF4 and CHOP (Table 1; ref. 26). Other UPR-associated proteins that were found to be altered in response to niguldipine included the following examples: ER chaperones that aid in coping with an excessive unfolded protein load were upregulated, for example, HSPA15, MAN1B1, and SEC63 (a BiP cochaperone; Table 1). Decreased phosphorylation and protein expression levels were found for the translation initiation factors EIF4G2 and EIF4H, respectively, as well as increased phosphorylation levels for the elongation factor EEF2 (Table 1). These alterations are known to lead to UPR-related translation arrest (26, 29–31).

Immunostaining showed a significant increase in CHOP and the ER chaperone Bip after 15-hour exposure to niguldipine or to penitrem A (Fig. 2C and D). These levels were comparable with cells treated with the UPR inducer A23187 (Fig. 2D; ref. 27), confirming UPR activation for both VGCC and KCa blockers. In addition, the ER stress sensor PERK showed altered electrophoretic mobility for niguldipine, penitrem A, and A23187, probably due to a posttranslational modification, that is, phosphorylation (Fig. 2E; ref. 32). A shared mediator of both UPR and the related amino acid response (AAR; refs. 33, 34) pathway is phosphorylation of EIF2α (p-EIF2α), and Western blot analysis showed robust increase in p-EIF2α (Fig. 2F).

Reactome analysis identifies induction of AAR in addition to UPR

To further explore the downstream signaling activated by VGCC/KCa block by niguldipine and penitrem A, we employed an orthogonal approach: we investigated changes at the RNA level by analyzing drug-induced transcriptome by RNA sequencing in the GIC line GliNS1 after 7-hour treatment and compared with mibebradil and A23187 (Supplementary Table S6A–S6D). The majority of genes highly induced by niguldipine and penitrem A treatment were UPR-associated (Fig. 3A and B), and were similar to the reacome induced by mibebradil (T-type VGCC blocker; Fig. 3C) and A23187 (which is known to induce

| Table 1. List of proteins involved in UPR pathway signaling identified in the (phospho)proteome analysis |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                | Protein level   | Phosphorylation level | Comments                |
|--------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CCL2                           | 2 hours 2.2     | 6 hours 2.1     | ——            | ATF4 and CHOP target genes                |
| HMOX1                          | 2 hours 2.1     | 6 hours 1.5     | ——            | ——              |
| SLC3A2                         | 2 hours 1.7     | 6 hours 1.6     | ——            | ——              |
| SQSTM1                         | 2 hours 1.6     | 6 hours 1.5     | ——            | ——              |
| HSPA13                         | 2 hours ——      | 6 hours ——      | ——            | ——              |
| SEC63                         | 2 hours 1.6     | 6 hours 1.5     | ——            | ——              |
| MAN1B1                        | 2 hours ——      | 6 hours ——      | ——            | ——              |
| EIF4G2                         | 2 hours ——      | 6 hours 3.8     | ——            | ——              |
| EIF4H                          | 2 hours 2.8     | 6 hours 4.7     | ——            | ——              |
| EEF2                           | 2 hours ——      | 6 hours 8.9     | ——            | Associated with inhibition of mRNA translation |

Figure 3.

The UPR-related AAR pathway is induced upon T-type VGCC and KCa block. A–D, Effect of VGCC and KCa channel block on the UPR-dependent transcriptional response. Plots of RNA sequencing–based gene expression levels versus fold change after 7-hour exposure to niguldipine (10 μmol/L; A), penitrem A (10 μmol/L; B), mibebradil (10 μmol/L; C), and A23187 (10 μmol/L, data from ref. 10; D) in GliNS1 GICs. RPMK reads per kilobase transcript per million reads. E, Venn diagram of shared gene expression responses to A23187, niguldipine, and penitrem A. UPR-induced transcripts are shown in red (identified by Han and colleagues, ref. 26) and AAR-associated genes in green. F, Overview of the AAR/UPR pathway and its main transcriptional targets (with shared drug induced targets in red).
Table 2. AAR-associated genes induced by niguldipine and penitrem A.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Niguldipine</th>
<th>Penitrem A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASNS</td>
<td>2.4×</td>
<td>8.0×</td>
</tr>
<tr>
<td>ATF3</td>
<td>4.0×</td>
<td>4.7×</td>
</tr>
<tr>
<td>ATF4</td>
<td>1.7×</td>
<td>2.5×</td>
</tr>
<tr>
<td>DDIT3 (CHOP)</td>
<td>7.8×</td>
<td>5.2×</td>
</tr>
<tr>
<td>SLC7A1 (CAT-1)</td>
<td>1.2×</td>
<td>2.7×</td>
</tr>
<tr>
<td>CEBPB</td>
<td>3.4×</td>
<td>6.0×</td>
</tr>
<tr>
<td>FOS</td>
<td>6.9×</td>
<td>5.7×</td>
</tr>
<tr>
<td>CALR</td>
<td>1.4×</td>
<td>1.0×</td>
</tr>
<tr>
<td>JUNB</td>
<td>2.4×</td>
<td>3.9×</td>
</tr>
<tr>
<td>VEGFA</td>
<td>2.4×</td>
<td>4.0×</td>
</tr>
<tr>
<td>MYC</td>
<td>2.0×</td>
<td>3.4×</td>
</tr>
</tbody>
</table>

NOTE: Fold change in mRNA expression in treated cells (RNA sequencing).

T-type VGCC and KCa block leads to cell shrinkage prior to cell death

Analysis of cell-cycle progression and cell death upon niguldipine treatment (40 hours; 10 μmol/L) showed a moderate induction of apoptosis (Supplementary Fig. S4A), an increase in sub-2n cellular debris (Supplementary Fig. S4B), which may be a consequence of apoptosis or necrosis (Supplementary Fig. S4C). This suggests that cell-cycle arrest and cell death occurred simultaneously. Live imaging also revealed an apparent change in morphology of GICs within 2 to 6 hours of administration of either niguldipine or penitrem A, in which the cells shrank and rounded up (Supplementary Fig. S4D). Administration of sublethal doses of niguldipine and penitrem A demonstrated that this change in morphology was sustained after washout of blocker (Fig. 4D).

VGCC and KCa block leads to membrane depolarization and increased influx of Na+

Ion channel blockers may affect ion fluxes and, potentially, membrane potential, and our data suggested similar downstream effects for T-type VGCCs and KCa channels. KCa channels are known to regulate membrane potential, and the block of these channels is expected to result in depolarization. We therefore analyzed the effects on membrane potential by niguldipine, penitrem A, and mibefradil, using the membrane potential-sensitive fluorescent dye DiBAC and flow cytometry. This confirmed that the three ion channel blockers induced depolarization in GICs in a similar manner within 15 minutes of treatment (Fig. 4A), indicating a converging mechanism. Changes in membrane potential may in turn affect many voltage-gated channels such as Na+-permeable channels. To investigate this possibility, a Na+-sensitive dye (Asante NaTRIUM green-2) was used to monitor changes in intracellular Na+ levels during treatment. This showed that niguldipine and penitrem A induced a surge of intracellular Na+ within minutes (Fig. 4B) and a similar effect was also found for mibefradil (Fig. 4C). Thus, blocking either T-type VGCC or KCa channels seemed to alter ion homeostasis in a similar manner, which is critical for cell survival in GICs. This is further supported by the fact that the two channels may associate into a functional electrophysiological unit (21).
Na\(^{+}\)-dependent transport was abrogated by niguldipine and penitrem A, unlike the residual Na\(^{+}\)-independent uptake (blue area in Fig. 4E–H). In summary, the results show that Ca\(^{2+}\) signaling blockers, such as niguldipine and penitrem A, cause membrane depolarization, increase in intracellular Na\(^{+}\) in GICs, which in turn leads to decreased Na\(^{+}\)-dependent transport and ultimately to nutrient starvation. This sequence of events explains the subsequent induction of UPR/AAR pathways (Fig. 5).

**Discussion**

Previous reports have shown the involvement of catabolic cellular pathway using blockers against VGCCs in cancer cells (12, 13). However, to date, the knowledge regarding pathways activated downstream of such ion channel blockers have remained limited and fragmented. For the first time, using a multi-angle approach, we comprehensively describe how both T-type VGCC and KCa ion channel blockers initiate downstream effects compromising tumor cell viability. GICs responded to block of these channels in a similar manner; block leads to reduction in Na\(^{+}\)-dependent nutrient transport and induction of the UPR and AAR pathways. Interestingly, the KCa channel blocker paxilline was previously identified to enhance apoptosis in serum-cultured glioma cells via a CHOP-mediated pathway (36). Moreover, activation of the vanilloid receptor TRPV1 promotes cell death in astrocytomas via ATF3 (14), which is upregulated in the UPR and AAR pathways (26). These reports thus support our data showing that ion channel–mediated cell death occurs via an extensive induction of UPR and AAR. In addition, data mining the report by Han and colleagues (26) and our data show that the ATF4- and CHOP-mediated transcriptome responses involve increased expression of a number of amino acid transporters that are Na\(^{+}\)-independent. Our finding that transport deficiency precedes UPR/AAR activation suggests a core capacity of the UPR/AAR pathways to respond to and possibly counteract the nutrient shortage caused by dissipated Na\(^{+}\) gradient. Notably, as the Na\(^{+}\) gradient is essential to drive import/export of numerous nutrients and ions, we suggest that the effect by channel blockers on nutrient import may be extensive. Investigations to determine the contribution of individual members of the large family of Na\(^{+}\)-dependent transporters toward UPR/AAR induction and cell death will be important to understand cellular response to nutrient starvation. Such studies will also shed light on potential similarities between stem cells and cancer stem cells regarding metabolism.

T-type VGCC and KCa channels have previously attracted attention as targets in glioma cell lines (25, 37–47). Our study extends the importance of T-type VGCCs and KCa channels as appealing targets in tumor-initiating cells. Importantly, for the first time, we show that niguldipine and penitrem A target selectively GIC growth and not normal cell growth in vitro and in vivo. This suggests that cancer cells are more sensitive to ion disturbance.
compared with other cell types. Interestingly, nighuldipine has been shown to reduce resistance to the chemotherapeutic agent mitoxantrone in breast cancer cells, via inhibition of the ABC transporter ABCG2 (48). ABCG2 is overexpressed in brain tumor stem cells compared with normal cancer cells and underlies resistance to chemotherapeutic agents by drug efflux (49). As chemoresistance in GICs may result in tumor recurrence, it is essential to develop drug strategies that target this cell population. Our in vivo data show increased survival in a mouse model for human GBM upon nighuldipine and penitrem A treatment. Therefore, studies involving, for example, nighuldipine as adjuvant or additive to the standard chemotherapy for patients affected by GBM would warrant consideration.

In conclusion, our mechanistic findings show that targeting essential cancer cell metabolism via depolarizing drugs is an option for efficient targeting of the resistant GICs. These findings pave the way for further studies of other compounds targeting additional points in the multifaceted network of proteins maintaining membrane potential and nutrient transport.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: M. Niklasson, G. Maddalo, B.B. Carson, P. Uhlén, S. Nelander, M. Andäng
Development of methodology: M. Niklasson, G. Maddalo, S. Wee, L.G.J. Hammarström, S. Nelander, M. Andäng
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M. Niklasson, G. Maddalo, E. Mutlu, S. Wee, P. Sekyrova, N. Fritz, I. Dehnisch, G. Kiyatrizis, M. Krafičkova, B.B. Carson, J. Feenstra, A.F.M. Allelaar, S. Linnarsson, P. Uhlén, P.O. Enger
Writing, review, and/or revision of the manuscript: M. Niklasson, G. Maddalo, E. Mutlu, S. Wee, P. Sekyrova, N. Fritz, G. Kiyatrizis, B.B. Carson, A. Segerman, C.T. Vincent, S. Nelander, P.O. Enger, M. Andäng
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Niklasson, G. Maddalo, E. Mutlu, S. Wee, G. Kiyatrizis, L. Uhrborn, P.O. Enger
Study supervision: P. Uhlén, S. Nelander, P.O. Enger, M. Andäng

Acknowledgments
We thank Victor N. Ubele (Merck) for TTA-P2 compound, Peter B. Dirks (The Hospital for Sick Children/University of Toronto, Toronto, Canada) for providing GIC lines, Annika Hermansson (IGP, Uppsala University, Uppsala, Sweden) for help with immunohistochemistry, and Jan Mulder (Science for Life Laboratory) for providing antibodies.

Grant Support
M. Niklasson, P. Sekyrova, and G. Maddalo were awarded postdoctoral fellowships from the Swedish Childhood Cancer Foundation, the Swedish Cancer Foundation, and the Swedish Research Council, respectively. The study was supported by grants to M. Andäng from Swedish Research Council, Swedish Cancer Foundation, Swedish Childhood Cancer Foundation, Karolinska Institutet, Grant Agency of the Czech Republic (GA15-20818S), CEITEC 2020 (LQ1601) project with financial contribution made by the Ministry of Education, Youths and Sports of the Czech Republic within special support paid from the National Programme for Sustainability II funds. The study was also supported by grants to T. Vincent from the Swedish Cancer Foundation and to A.F.M Allelaar by the Netherlands Organization for Scientific Research (NWO) as part of the National Roadmap Large-Scale Research Facilities of the Netherlands (project number 184.032.201), the Prime XS-Consortium, seventh framework EU (XS-000158).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 23, 2016; revised November 9, 2016; accepted November 29, 2016; published OnlineFirst January 13, 2017.

References
Niklasson et al.


Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses

Mia Niklasson, Gianluca Maddalo, Zuzana Sramkova, et al.

Cancer Res  Published OnlineFirst January 13, 2017.

Updated version  Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-16-2274

Supplementary Material  Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2017/01/13/0008-5472.CAN-16-2274.DC1

E-mail alerts  Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions  To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions  To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2017/03/22/0008-5472.CAN-16-2274. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.