Abstract
Inhibition of specific Akt isoforms in CD8+ T cells promotes favored differentiation into memory versus effector cells, the former of which are superior in mediating anti-tumor immunity. In this study, we investigated the role of upstream PI3K isoforms in CD8+ T cell differentiation and assessed the potential use of PI3K isoform-specific inhibitors to favorably condition CD8+ T cells for adoptive cell therapy. The phenotype and proliferative ability of tumor antigen specific CD8+ T cells was assessed in the presence of PI3K-α, -β, or -δ inhibitors. Inhibition of PI3K-δ, but not PI3K-α or PI3K-β, delayed terminal differentiation of CD8+ T cells and maintained the memory phenotype, thus enhancing their proliferative ability and survival while maintaining their cytokine and granzyme B production ability. This effect was preserved in vivo after of ex vivo PI3K-δ inhibition in CD8+ T cells destined for adoptive transfer, enhancing their survival and also the anti-tumor therapeutic activity of a tumor-specific peptide vaccine. Our results outline a mechanism by which inhibitions of a single PI3K isoform can enhance the proliferative potential, function and survival of CD8+ T cells, with potential clinical implications for adoptive cell transfer and vaccine-based immunotherapies.
- Received July 21, 2016.
- Revision received February 10, 2017.
- Accepted June 5, 2017.
- Copyright ©2017, American Association for Cancer Research.