Abstract
The increased presence of myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in tumor tissue has been extensively reported. However, their role in the regulation of hyaluronan (HA) metabolism in the tumor microenvironment has not been established. Here we describe a novel function of tumor-associated myeloid cells related to the enhanced breakdown of extracellular HA in human bladder cancer tissue, leading to the accumulation of small HA fragments with MW <20 kDa. Increased fragmentation of extracellular HA and accumulation of low molecular weight HA (LMW-HA) in tumor tissue was associated with elevated production of multiple inflammatory cytokines, chemokines, and angiogenic factors. The fragmentation of HA by myeloid cells was mediated by the membrane-bound enzyme hyaluronidase 2 (Hyal2). Increased numbers of Hyal2+CD11b+ myeloid cells were detected in the tumor tissue as well as in the peripheral blood of bladder cancer patients. Co-expression of CD33 suggested that these cells belong to monocytic myeloid-derived suppressor cells. The HA-degrading function of Hyal2-expressing MDSC could be enhanced by exposure to tumor-conditioned medium, and IL-1β was identified as one of the factors involved in the stimulation of Hyal2 activity. CD44-mediated signaling played an important role in the regulation of HA-degrading activity of Hyal2-expressing myeloid cells, as the engagement of CD44 receptor with specific monoclonal antibody triggered translocation of Hyal2 enzyme to the cellular surface and stimulated secretion of IL-1β. Taken together, this work identifies Hyal2-expressing tumor-associated myeloid cells as key players in the accumulation of LMW-HA in the tumor microenvironment and cancer-related inflammation and angiogenesis.
- Received April 11, 2020.
- Revision received September 15, 2020.
- Accepted November 20, 2020.
- Copyright ©2020, American Association for Cancer Research.